\(\left\{{}\begin{matrix}2mx+3y=5\\\left(m+1\right)x+y=2\end{matri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

22 tháng 12 2016

Giao luu

30 tháng 3 2019

3.

30 tháng 3 2019

ấn nhầm =)

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Bài 2:
Với $x,y,z$ nguyên dương ta thấy:

\((x+y)^2+3x+y+1> (x+y)^2(1)\)

Và:

\((x+y)^2+3x+y+1< (x+y)^2+4(x+y)+4\)

hay $(x+y)^2+3x+y+1< (x+y+2)^2(2)$

Từ \((1);(2)\Rightarrow (x+y)^2< (x+y)^2+3x+y+1< (x+y+2)^2\)

\(\Leftrightarrow (x+y)^2< z^2< (x+y+2)^2\)

Theo nguyên lý kẹp suy ra $z^2=(x+y+1)^2$

$\Leftrightarrow (x+y)^2+3x+y+1=(x+y+1)^2$

$\Leftrightarrow x=y$

Thay vào PT ban đầu:

\((2x)^2+3x+x+1=z^2\Leftrightarrow (2x+1)^2=z^2\Rightarrow 2x+1=z\) (không có TH $2x+1=-z$ do $x,z$ cùng nguyên dương)

Vậy PT có nghiệm $(x,y,z)=(m,m,2m+1)$ với $m$ là số nguyên dương bất kỳ.

AH
Akai Haruma
Giáo viên
28 tháng 8 2019

Lời giải:

Xét

PT \(\Leftrightarrow x^3=y^3+2y^2+3y+1\)

Ta thấy:

\(y^3+2y^2+3y+1=(y^3+3y^2+3y+1)-y^2=(y+1)^3-y^2\leq (y+1)^3(1)\)

\(y^3+2y^2+3y+1=(y^3-3y^2+3y-1)+5y^2+2=(y-1)^3+5y^2+2\)

\(>(y-1)^3(2)\)

Từ \((1);(2)\Rightarrow (y+1)^3\geq y^3+2y^2+3y+1> (y-1)^3\)

\(\Leftrightarrow (y+1)^3\geq x^3> (y-1)^3\)

Theo nguyên lý kẹp thì \(\left[\begin{matrix} x^3=(y+1)^3\\ x^3=y^3\end{matrix}\right.\)

Nếu \(x^3=(y+1)^3\Leftrightarrow y^3+2y^2+3y+1=(y+1)^3\)

\(\Leftrightarrow y=0\)

\(\Rightarrow x^3=1\Rightarrow x=1\)

Nếu \(x^3=y^3\Leftrightarrow y^3+2y^2+3y+1=y^3\)

\(\Leftrightarrow 2y^2+3y+1=0\Leftrightarrow (2y+1)(y+1)=0\Rightarrow y=-1\) (do $y$ nguyên)

$\Rightarrow x^3=y^3=-1\Rightarrow x=-1$

Vậy $(x,y)=(1,0); (-1,-1)$

29 tháng 11 2015

x = 2 -my (1)

(2) => m( 2 - my) - 2y = 1

=> (m2+2) y = 2m -1 (*)=> pt luôn có nghiệm duy nhất  => \(y=\frac{2m-1}{m^2+2}\in Z\)

(*) => y m2 -2m +2y -1 =0

+ y =0 => x =2 ; m =-1/2

+y \(\ne\)0 => \(\Delta\)' =1 - 2y2 +y >/ 0 => -1/2 </ y </ 1

 => y =o loại ; y =1

với y =1 =>  m= 1 => x =1 (tm)

Vậy m= -1/2 => (x;y) =(2;0)

  m =1 => (x;y) =(1;1)

4 tháng 3 2020

2)

a)Thay m = 2 vào hệ, ta được :

HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)

Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)

\(\Leftrightarrow x+y=1\)(***)

Lấy (**) trừ (***), ta được :

\(\Leftrightarrow x+3y-x-y=2-1\)

\(\Leftrightarrow2y=1\)

\(\Leftrightarrow y=\frac{1}{2}\)

\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)

b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :

HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)

\(\Leftrightarrow m=-1\)

Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)

NV
23 tháng 5 2019

Câu 1:

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)

\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

Thay vào pt dưới:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)

NV
23 tháng 5 2019

Câu 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)

\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)

\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)

TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:

\(\left(-2y-1\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)

TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:

\(\left(-2y-2\right)y+y^2+3y+1=0\)

\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)