K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

Xét hai tam giác BAD và tam giác CAD, có:

BA=CA (do A thuộc đường trung trực của BC)

AD chung 

BI=CI (do I thuộc đường trung trực BC)

Vậy tam giác BAD=tam giác CAD

Suy ra: góc BAD=góc CAD(hai góc tương ứng)

Vậy AD là tia phân giác của góc BAC (đpcm)

20 tháng 4 2020

Bạn tự vẽ hình nha!!!

a.)Xét\(\Delta ABD\)\(\Delta ABM\)có:

            \(AD=BM\)

            \(AB:\)Chung

           \(\widehat{DAB}=\widehat{ABM}\left(slt\right)\)

\(\Rightarrow\Delta ABD=\Delta BAM\)

b.)Ta có:\(\Delta ABD=\Delta BAM\)(Theo a)

    \(\Rightarrow\widehat{DBA}=\widehat{BAM}\)(mà 2 góc SLT)

\(\Rightarrow AM//BD\)

c.)Xét\(\Delta ADI\)\(\Delta IMC\)có:

    \(AD=CM\)

   \(\widehat{DAI}=\widehat{IMC}\)

    \(AI=IM\)

\(\Rightarrow\Delta AID=\Delta IMC\)

\(\Rightarrow IA=IC\)

\(\Rightarrow I\)là trung điểm của\(AC\)

\(\Rightarrow I,A,C\)thẳng hàng(đpcm)

P/s:#Study well#

23 tháng 6 2020

A B D C H E K I

Trong tia đối của tia HB và ED lấy điểm K  và I sao cho : \(HK=EI\)

Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)

Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)

Suy ra \(KE=IH\)\(< =>IH< KC\)

Đến đây mình chịu rồi 

23 tháng 6 2020

VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi 

Làm

Từ E kẻ EK vuông góc với BC tại K 

vì DH vuông góc với AC 

ED vuông góc AE hay ED vuông góc với AC=> BH // ED

=> góc HBE = BED ( so le trong ) (1)

mặt khác BD = DE theo câu a 

=> tam giác BDE cân tại D => góc EBD = BED (2)

Từ 1 , 2 suy ra góc HBE = EBK

Xét 2 TG vuông BHE và BKE có

HE là cạnh chung

góc HBE = EBK (theo cmt )

Do đó : tam giác BHE = BKE ( ch_gnh )

=> EH = EK

Trong tam giác EKC có EC là cạnh huyền 

=> EC > EK => EC > EH 

HỌC TỐT Ạ

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0
23 tháng 4 2018

bn tự vẽ hình nha
a) + Tg ABC có B> C (GT) => AC> AB 
 BH, CH lần lượt là hình chiếu của AB và AC lên đường thẳng BC
Mà AC>AB (CMT)=> HC> HB -> đpcm
 



 

27 tháng 3 2019

https://olm.vn/hoi-dap/detail/65705170709.html

tham khảo

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)