K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

19 tháng 4 2020

Bài 1:

Mình sửa lại đề 1 chút:  \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)

Số hạng trong dãy là: (101-1):2+1=51

P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101

Vì (-1)2n+1=-1 với n thuộc Z

=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)

=> P(-1)=-51

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)

15 tháng 6 2019

a/ \(\left(\frac{-2}{3}\right)^4:24=\frac{16}{81}:24=\frac{2}{243}\)

b/ \(\left(\frac{3}{4}\right)^3.4^4=\frac{27}{64}.256=108\)

c/ \(\frac{3.0,8^5}{2,4^4}=\frac{3.0,32768}{33,1776}=\frac{0,98304}{33,1776}=\frac{4}{135}\)

d/ \(\frac{3^3-0,9^5}{2,7^4}=\frac{27-0,59049}{53,1441}=\frac{26,40951}{53,1441}=0,4969415231\)

e/\(\left(\frac{-7}{2}\right)^2+\left(\frac{-3}{4}\right)^3.64-\left(\frac{-61}{5}\right)\)

\(=\frac{49}{4}+\frac{-27}{64}.64+\frac{61}{5}\)

\(=12,25-27+12,2\)

\(=-2,55\)

f/ \(\frac{2^4.2^6}{\left(2^5\right)^2}-\frac{2^5.15^3}{6^3.10^2}=\frac{2^{10}}{2^{10}}-\frac{2^5.5^3.3^3}{2^3.3^3.5^2.2^2}\)

                                      \(=1-\frac{2^5.5^3.3^3}{2^5.3^3.5^2}=1-\frac{5}{1}=-4\)

                                       \(\)

chúc bạn học tốt

25 tháng 10 2018

\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)

\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)

\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)

\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)

\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)

\(=3,75.\left(7,2+2,8\right)\)

\(=3,75.10=37,5\)

\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)

\(=\frac{-3}{7}+-\frac{4}{7}=-1\)

\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)

\(=9-\frac{1}{8}.8+0,2\)

\(=9-1+0,2=8+0,2=8,2\)

25 tháng 10 2018

\(a-c\left(tựlm\right)\)

\(b.\left(x-1\right)^5=-32\)

\(\Rightarrow\left(x-1\right)^5=\left(-2\right)^5\)

\(\Rightarrow x-1=-2\)

\(x=-2+1=-1\)

\(d.\left(2^3:4\right).2^{x+1}=64\)

\(2.2^{x+1}=64\)

\(\Rightarrow2^{1+x+1}=64=2^6\)

\(\Rightarrow2+x=6\Rightarrow x=6-2=4\)

3 tháng 12 2019

1) So sánh

Ta có : 224 = 23.8 = (23)8 = 88

           316 = 32.8 = (32)8 = 98

Vì 88 < 98

=>  224 < 316 

2) Tính

\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)

3) Tìm x nguyên

(x - 1)x + 2 = (x - 1)x + 6

=> (x - 1)x + 6 - (x - 1)x + 2 = 0

=> (x - 1)x + 2.[(x - 1)4 - 1] = 0

=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)

Nếu x - 1 = 0 => x = 1(tm)

Nếu x - 1 = - 1 => x = 0(tm)

Nếu x - 1 = 1 => x = 2(tm)

Vậy \(x\in\left\{1;0;2\right\}\)

3 tháng 12 2019

Bài 1:Ta có:

2^24=2^(6.4)=64^4

3^16=3^(4.4)=81^4

Bài 2.Ta có:

(0.25)^4=1/4.1/4.1/4.1/4=1/256

=>1/256.1024=4

Bài 3:

Ta có:(x-1)^(x+2)=(x-1)^(x+6)

Chia hai vế cho (x-1)^(x+2),do đó:

1=(x-1)^(x+4)

<=>x-1=1

<=>x=2

Hoặc chia hai vế cho (x-1)^(x+6)

(x-1)^(x-4)=1

<=>x-1=1

<=>x=2