K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

Vô tri

6 tháng 9

Hình như đề sai pk ko bn. Mình nghĩ BC=3BN mới hợp lý ấy

Nếu theo gt MD=2MB và BC=3BN thì ta có trong tam giác BCD, BM/BD=BN/BC=1/3 => Theo talet ta có MN//CD mà CD thuộc ACD nên => MN//(ACD).

b) Gọi AB cắt MP tại E, E đều thuộc AB và MP.lại có N thuộc (ABC) và (MNP) => giao tuyến EN

14 tháng 12 2021

14 tháng 12 2021

22 tháng 9 2023

Tham khảo:

a) Xét trên mp(BCD): NP cắt CD tại I

I thuộc NP suy ra I nằm trên mp(MNP)

Suy ra giao điểm của CD và mp(MNP) là I

b) Ta có I, M đều thuộc mp(ACD) suy ra IM nằm trên mp(ACD)

I, M đều thuộc mp(MNP) suy ra IM nằm trên mp(MNP)

Do đó, IM là giao tuyến của 2 mp(ACD) và mp(MNP) hay EM là giao tuyến của 2 mp(ACD) và mp(MNP).

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.

15 tháng 10 2019

NP là đường trung bình của ∆ACD ⇒ NP // AB, mà AB ⊂ (ABC) ⇒NP // (ABC)

P ∈ (MNP) ∩ (ACD) (1)

Trong mặt phẳng (BCD) gọi J = MN ∩ CD, có

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

J ∈ (MNP) ∩ (ACD) (2)

Từ (1) và (2) : (MNP) ∩ (ACD) = JP

Trong mặt phẳng (ACD) gọi Q = JP ∩ AC. Có:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

⇒ Q = AC ∩ (MNP). Có:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

⇒MQ // NP // AB

Theo định lí Ta – lét có

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Kết luận:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án A

21 tháng 11 2023

Trong mp(BCD), gọi M là giao điểm của KJ với DC

\(M\in KJ\subset\left(IJK\right)\)

\(M\in CD\subset\left(ACD\right)\)

Do đó: \(M\in\left(IJK\right)\cap\left(ACD\right)\left(1\right)\)

\(I\in AC\subset\left(ACD\right);I\in\left(IJK\right)\)

=>\(I\in\left(ACD\right)\cap\left(IJK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(IJK\right)\cap\left(ACD\right)=MI\)

Xét ΔCAB có

\(\dfrac{CI}{CA}=\dfrac{CJ}{CB}=\dfrac{1}{2}\)

nên IJ//AB

\(K\in BD\subset\left(ABD\right);K\in\left(IJK\right)\)

=>\(K\in\left(ABD\right)\cap\left(IJK\right)\)

Xét (ABD) và (IJK) có

\(K\in\left(ABD\right)\cap\left(IJK\right)\)

IJ//AB

Do đó: (ABD) giao (IJK)=xy, xy đi qua K và xy//IJ//AB

31 tháng 3 2017

a) Ta có E, N ∈ (MNP) ⋂ (BCD)

=> (PMN) ⋂ (BCD) = EN.

b) Gọi Q là giao điểm của NE và BC thì Q là giao điểm của (PMN) và BC.

11 tháng 9 2021

undefined

a,Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (BCD)

Hiển nhiên : D ∈ (KAD) và D ∈ (BCD)

⇒ (KAD) \(\cap\) (BCD) = DK

b, Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (IBC) 

Hiển nhiên I ∈ (IBC), mà I ∈ AD nên I ∈ (KAD)

⇒ (KAD) \(\cap\) (BCI) = IK

c, Trong (ABD) gọi E là giao điểm của BI và DM

⇒ \(\left\{{}\begin{matrix}E\in\left(IBC\right)\\E\in\left(DMN\right)\end{matrix}\right.\)

Trong (ACD) gọi F là giao điểm của CI và DN

⇒ \(\left\{{}\begin{matrix}F\in\left(IBC\right)\\F\in\left(DMN\right)\end{matrix}\right.\)

Vậy (DMN) \(\cap\) (IBC) = EF 

11 tháng 9 2021

sửa điểm H trên hình thành điểm F nhá