K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

A B C D E F H

Bài làm:

Ta có: \(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\)

\(=\left(\frac{AH}{HD}+1\right)+\left(\frac{BH}{HE}+1\right)+\left(\frac{CH}{HF}+1\right)-3\)

\(=\frac{AH+HD}{HD}+\frac{BH+HE}{HE}+\frac{CH+HF}{HF}-3\)

\(=\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}-3\)

\(=\frac{S_{ABC}}{S_{BHC}}+\frac{S_{ABC}}{S_{AHC}}+\frac{S_{ABC}}{S_{AHB}}-3\)

\(=S_{ABC}\left(\frac{1}{S_{BHC}}+\frac{1}{S_{AHC}}+\frac{1}{S_{AHB}}\right)-3\)

\(\ge S_{ABC}\cdot\frac{9}{S_{BHC}+S_{AHC}+S_{AHB}}-3\)

\(=S_{ABC}\cdot\frac{9}{S_{ABC}}-3\)

\(=9-3=6\)

Dấu "=" xảy ra khi H là trọng tâm tam giác ABC

=> Tam giác ABC đều => AB = AC vô lý

=> Không xảy ra dấu bằng

=> đpcm

21 tháng 9 2020

làm giùm thì được chứ subrice là ko

16 tháng 10 2020

Vẽ đường kính AD

^ACD là góc nội tiếp chắn nửa đường tròn nên là góc vuông => AC⊥CD

Mà BH⊥AC (gt) nên CD // BH (1)

Tương tự, ta có: BD // CH (2)

Từ (1) và (2) suy ra BHCD là hình bình hành 

∆OBC cân tại O (do có hai cạnh OB và OC là bán kính của đường tròn tâm O) có OI là đường cao nên cũng là trung tuyến => I là trung điểm của BC do đó I cũng là trung điểm của HD

Có O là trung điểm của AD (gt), I là trung điểm của HD (cmt) nên OI là đường trung bình của ∆AHD => AH = 2OI (đpcm)

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh tứ giác DHKC nội tiếp b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD c) Đường thẳng đi qua K song song với BC cắt đường...
Đọc tiếp

Bài 3. Cho ABC nội tiếp (O) đường kính AC (BA < BC). Trên đoạn thẳng OC lấy điểm I bất kì (I khác O và C). Đường thẳng BI cắt đường tròn tâm (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC).

a) Chứng minh tứ giác DHKC nội tiếp

b) Cho độ dài AC bằng 4 cm và ABD = 600 . Tính diện tích tam giác ACD

c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC thì E luôn nằm trên một đường tròn cố định.

Bài 4. Cho đường tròn tâm (O), hai điểm A, B nằm trên (O) sao cho AOB = 900 . Điểm C trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Các đường cao AI và BK của tam giác ABC cắt nhau tại H, BK cắt (O) tại N (N khác B); AI cắt (O) tại điểm M (M khác điểm A); NA cắt MB tại điểm D. Chứng minh rằng

a) Tứ giác CIHK nội tiếp

b) MN là đường kính của (O)

c) OC song song với DH.

 

GIÚP MÌNH VỚI!!!

GẤPPP

1
17 tháng 2 2020

Xin lỗi các bạn nhé 

Bài 3: góc ABD = 60 độ

Bài 4: AOB = 90 độ

17 tháng 6 2018

M A B H O N I K C D O'

1) Xét đường tròn tâm O' đường kính AN: Điểm I thuộc (O') => ^AIN=900 => ^NIB=900

Xét tứ giác NHBI: ^NHB=^NIB=900 => Tứ giác NHBI nội tiếp đường tròn (đpcm).

2) Ta có tứ giác AKNI nội tiếp (O') => ^KAI+^KNI=1800 (1)

Tứ giác NHBI nội tiếp đường tròn (cmt) => ^INH+^IBH=1800 (2)

MA và MB là 2 tiếp tuyến của (O;R) => MA=MB => \(\Delta\)AMB cân tại M

=> ^MAB=^MBA hay ^KAI=^IBH (3)

Từ (1); (2) và (3) => ^KNI=^INH

Ta thấy: ^NKI=^NAI (Cùng chắn cung NI)

Theo t/c góc tạo bởi tiếp tuyến và dây cung => NAI=^NBH

=> ^NKI=^NBH. Mà ^NBH=^NIH (Cùng chắn cung HN) => ^NKI=^NIH

Xét \(\Delta\)NHI và \(\Delta\)NIK: ^NIH=^NKI; ^KNI=^INH (cmt) => \(\Delta\)NHI~\(\Delta\)NIK (g.g) (đpcm).

3) ^NIH=^NKI. Mà ^NKI=^NAI => ^NIH=^NAI hay ^NIC=^NAB (4)

^NIK=^NAK (Chắn cung NK). Mà ^NAK=^NBA (Góc tạo bởi tiếp tuyến và dây cung)

=> ^NIK=^NBA hay ^NID=^NBA (5)

Cộng (4) & (5) => ^NIC+^NID = ^NAB+^NBA = 1800 - ^ANB = 1800-^CND

=> ^CID+^CND=1800 => Tứ giác CNDI nội tiếp đường tròn => ^NDC=^NIC

Lại có: ^NIC=^NKI=^NAI => ^NDC=^NAI (2 góc đồng vị) => CD//AI hay CD//AB (đpcm).

11 tháng 11 2018

A B C H I J K M N P D E F

I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao

M, N, P lần lượt là trung điểm của BC , AC, AB

D, E, F lần lượt là trung điểm của HA,  HB, HC

O là giao điểm của NE và PF

+)  NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)

EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)

Từ (1), (2) => NFEP là hình bình hành (3)

NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)

Từ (3), (4) => NFEP là hình chữ nhật  => Tâm đường tròn ngoại tiếp NFEP  là O giao của FP và NE

và O là trung điểm FP, O là trung điểm NE

+)  Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)

=> O là trung điểm DM

+)  Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM

+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN

=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính  NE

11 tháng 11 2018

Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!