Bài toán: Tìm x; y biết:

a. ....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 1:

$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$

$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$

Vậy $20092009^{10}> 2009^{20}$

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?

Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.

Bài 4:

Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$

Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)

$\Rightarrow n\vdots 2$. Ta có:

$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$

Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.

Hay $n\vdots 4$

12 tháng 2 2017

2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)

\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)

=> KL....

12 tháng 2 2017

I2x+3I=x+2

TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3

PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))

TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3

PT: 2x+3=x+2 => x=-1 (tm (**))

Vậy x=...

2 tháng 1 2016

b1:Vì y tỉ lệ nghịch với x nên \(\frac{x_2}{y_1}=\frac{x_1}{y_2}->\frac{7x_2}{7y_1}=\frac{8x_1}{8y_2}=\frac{7\cdot5-8\cdot6}{7y_1-8y_2}=\frac{-13}{\frac{1}{3}}=-39\)

rồi từ đây chắc c lm đc r

b2: câu này thiếu z ở phần đầu

hôm n mk mệt, có j mai thắc mắc hỏi mk