K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8

A D B C E I G K

Xét tg ABD

BD=BA (gt) => tg ABD cân tại B \(\Rightarrow\widehat{BAD}=\widehat{BDA}\)

\(\widehat{B}=\widehat{BAD}+\widehat{BDA}=2\widehat{BDA}\) (Trong tg góc ngoài bằng tổng 2 góc trong không kề với nó

Xét tg ACE

CE=CA(gt) => tg ACE cân tại C \(\Rightarrow\widehat{CAE}=\widehat{CEA}\)

\(\widehat{C}=\widehat{CAE}+\widehat{CEA}=2\widehat{CEA}\)

Xét tg ABC

\(\widehat{B}>\widehat{C}\left(gt\right)\)  \(\Rightarrow2\widehat{BDA}>2\widehat{CEA}\Rightarrow\widehat{BDA}>\widehat{CEA}\)

Xét tg ADE có

\(\widehat{BDA}>\widehat{CEA}\Rightarrow AE>AD\)  (Trong tg cạnh dối diện góc lớn hơn thì có độ dài lớn hơn)

b/

Xét tg cân ABD có

\(AG=BG\left(gt\right)\Rightarrow BG\perp AB\) (Trong tg cân đường trung tuyến xp từ đỉnh tg cân đồng thời là đường cao) \(\Rightarrow IG\perp AB\)

=> tg AID cân tại I (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân => IA=ID

C/m tương tự ta cùng có tg AIE cân tại I => IA=IE

=> ID=IE=IA => tg DIE cân tại I

Qua I dựng đường thẳng d vuông góc với DE => d thuộc đường cao của tg DIE => I thuộc trung trực của tg DIE (Trong tg cân đường cao xuất phát từ đỉnh tg cân đồng thời là đường trung trực

\(\Rightarrow I\in d\) là đường trung trực của DE

c/

ID=IA=IE => tg ADE nội tiếp đường tròn (I)

\(\Rightarrow sđ\widehat{BDA}=\dfrac{1}{2}sđcungAE\) (góc nội tiếp)

Ta có

\(sđ\widehat{AIE}=sđcungAE\) (góc ở tâm)

\(\Rightarrow\widehat{AIE}=2\widehat{BDA}\)

Mà \(\widehat{B}=2\widehat{BDA}\) (cmt)

\(\Rightarrow\widehat{B}=\widehat{AIE}\)

Ta có B và I cùng nhìn AE dưới 2 góc bằng nhau => ABIE là tứ giác nội tiếp

\(\Rightarrow\widehat{BAI}=\widehat{BEI}\) (góc nt cùng chắn cung BI) (1)

Xét tg cân AIE có

\(IK\perp AE\Rightarrow\widehat{AIK}=\widehat{EIK}\) (trong tg cân đường cao XP từ đỉnh tg cân đồng thời là đường phân giác của góc ở đỉnh)

Xét tg AIC và tg EIC có

IA=IE (cmt); \(\widehat{AIK}=\widehat{EIK}\left(cmt\right)\); IC chung => tg AIC = tg EIC (c.g.c)

\(\Rightarrow\widehat{CAI}=\widehat{BEI}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)

 

 

 

 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế