K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Đặt \(x+z=a;y+z=b\left(a,b\ge0\right)\)=> ab=1

=> \(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-b\right)^2}+b^2+a^2\)

                                                            \(=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\ge2+2=4\)(Do ab=1)(ĐPCM)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a-b=\pm1\\ab=1\end{cases}}\)=> \(\hept{\begin{cases}x+z=\frac{1+\sqrt{5}}{2}\\y+z=\frac{\sqrt{5}-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x+z=\frac{\sqrt{5}-1}{2}\\y+z=\frac{\sqrt{5}+1}{2}\end{cases}}\)

Đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)từ giả thiết => ab=1

\(\Rightarrow A=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=\frac{1}{a^2+b^2-2}+a^2+b^2=\frac{1}{a^2+b^2-2}+a^2+b^2-2+2\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{a^2+b^2-2}+a^2+b^2-2\ge2\sqrt{\frac{a^2+b^2-2}{a^2+b^2-2}}=2\)

\(\Rightarrow A\ge4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+z=1\\y+z=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\ge0\\z\ge0\end{cases}}}\)

31 tháng 10 2018

cau a la bdt vas

con cau b la van dung he qua cua bdt vas

9 tháng 8 2016

\(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)\(x-y=\left(x+z\right)-\left(y+z\right)=a-b\)

\(ab=1\Rightarrow b=\frac{1}{a}\)

\(A=VT=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\frac{1}{a^2}+a^2\)

\(=\frac{a^2}{\left(a^2-1\right)^2}+a^2+\frac{1}{a^2}\)

\(t=a^2>0\)

\(A=\frac{t}{\left(t-1\right)^2}+t+\frac{1}{t}\)

\(A-4=\frac{\left(t^2-3t+1\right)^2}{t\left(t-1\right)^2}\ge0\)

\(\Rightarrow A\ge4\)

Dấu bằng xảy ra khi \(t=a^2=\frac{3\pm\sqrt{5}}{2}\)\(\Leftrightarrow a=\sqrt{\frac{3\pm\sqrt{5}}{2}}\)

\(\Leftrightarrow\hept{\begin{cases}a=x+z=\sqrt{\frac{3+\sqrt{5}}{2}}\\b=y+z=\sqrt{\frac{3-\sqrt{5}}{2}}\end{cases}}\) và hoán vị còn lại 

Hệ trên có vô số nghiệm, chẳng hạn

\(\hept{\begin{cases}z=\frac{1}{10}\\x=\sqrt{\frac{3+\sqrt{5}}{2}}-\frac{1}{10}\\y=\sqrt{\frac{3-\sqrt{5}}{2}}-\frac{1}{10}\end{cases}}\)

9 tháng 8 2016

giúp với.

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\). Vậy ta cần chứng minh

\(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\), ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng. Vậy ta có đpcm

24 tháng 11 2016

1) BĐT chứng minh ⇔∑(x2y2+y2x2)≥212
Ta có x2y2+y2x2≥2
Ta sẽ đi chứng minh y2z2+z2y2+z2x2+x2z2≥172
Ta có y2z2+x2z2≥12(xz+yz)2
z2y2+z2x2≥12(4zx+y)2
Đặt a=zx+y≥1
Ta sẽ chứng minh 12a2+8a2≥172
Dễ thấy bđt này đúng suy ra đpcm

17 tháng 1 2019

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

18 tháng 1 2019

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

24 tháng 11 2016

\(BDT\Leftrightarrow\text{∑}\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\ge\frac{21}{2}\)

Mà \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)(dùng AM-GM giải quyết chỗ này)

Vậy ta cần chứng minh \(\frac{y^2}{z^2}+\frac{z^2}{y^2}+\frac{z^2}{x^2}+\frac{x^2}{z^2}\ge\frac{17}{2}\)

\(\Leftrightarrow\frac{y^2}{z^2}+\frac{x^2}{z^2}\ge\frac{1}{2}\left(\frac{x}{z}+\frac{y}{z}\right)^2\)

\(\Leftrightarrow\frac{z^2}{y^2}+\frac{z^2}{x^2}\ge\frac{1}{2}\left(\frac{4z}{x+y}\right)^2\)

Đặt \(a=\frac{z}{x+y}\ge1\),ta chứng minh \(\frac{1}{2a^2}+8a^2\ge\frac{17}{2}\)

Dễ thấy BĐT này đúng.Vậy ta có đpcm

27 tháng 8 2017

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)

Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)