Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)

\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)

\(ĐKXĐ:\)tự làm nhé
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{-3\sqrt{x}-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{1+\sqrt{x}}{\sqrt{x}-3}\right)\)
\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right)\times\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(P=\frac{-3}{\sqrt{x}+3}\)
P/s tham khảo

Câu 3 :
\(ĐKXĐ:x>0\)
\(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)
b) Để P = 3
\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)
\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)
\(\Leftrightarrow x-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)(tm)
Vậy để \(P=3\Leftrightarrow x=4\)
Câu 1 : Hình như sai đề !! Mik sửa :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)
\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)
b) Để A < 2
\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)
\(\Leftrightarrow-1< 2\sqrt{x}-4\)
\(\Leftrightarrow2\sqrt{x}>3\)
\(\Leftrightarrow\sqrt{x}>1,5\)
\(\Leftrightarrow x>2,25\)
Vậy để \(A< 2\Leftrightarrow x>2,25\)

\(C=\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{3x+3}{9-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-3}-\frac{1}{2}\right)\) ĐK \(x\ge0;x\ne9\)
\(C=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}-\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)}-\frac{1\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)}\right)\)
\(C=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}\right)\)
\(C=\frac{-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{2\left(\sqrt{x}-3\right)}\)
\(C=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) x \(\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}\)
\(C=\frac{-6}{\sqrt{x}+3}\)
b: ta có \(C=\frac{-6}{\sqrt{x}+3}\) mà \(C=\frac{1}{2}\)
\(\frac{-6}{\sqrt{x}+3}=\frac{1}{2}\)
\(-12=\sqrt{x}+3\)
\(\sqrt{x}=-15\)(Loại)
=> x không có giá trị nào để C=\(\frac{1}{2}\)

Giúp tôi giải toán và làm văn
Tất cảToánVăn - Tiếng ViệtTiếng Anh

26 tháng 7 2016 lúc 15:48
I don't need nghĩa là gì , đoán đúng cho 10 nghìn ,cấm tra google dịch
Được cập nhật Vài giây trước


Thống kê hỏi đáp
Báo cáo sai phạm
i don't need la tao ko can

Thống kê hỏi đáp
Báo cáo sai phạm
Ôi trời câu hỏi của bạn trờ thành câu trả lời luôn hả ?

Thống kê hỏi đáp
Báo cáo sai phạm
ngu đâu mà trả lời .
hứ

10 tháng 3 lúc 14:50
Choa≥0,b≥0 Chứng minh bất đẳng thức Cauchy : a+b2 ≥√ab
Được cập nhật 2 phút trước


Thống kê hỏi đáp
Báo cáo sai phạm
BĐT tương đương :
a+b≥2√ab
⇔(a+b)2≥4ab
⇔(a−b)2≥0 ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra ⇔a=b

\(a,P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\left(\frac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{2-\sqrt{x}}{\sqrt{x}+3}\)
\(=\frac{3}{2-\sqrt{x}}\)
b, Để P > 0 thì \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)(Thỏa mãn DKXD)
\(c,Q=P\left(x+1\right)=\frac{3\left(x+1\right)}{2-\sqrt{x}}\)
Ko biết e đã học miền giá trị chưa nhỉ ???