Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H�nh ?a gi�c TenDaGiac1: DaGiac[D, C, 4] ?o?n th?ng f: ?o?n th?ng [D, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng g: ?o?n th?ng [C, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [B, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [A, D] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng M_1: ?o?n th?ng [A, M] ?o?n th?ng l: ?o?n th?ng [A, N] ?o?n th?ng m: ?o?n th?ng [B, P] ?o?n th?ng n: ?o?n th?ng [A, P] ?o?n th?ng p: ?o?n th?ng [N, M] D = (-2.88, 3.14) D = (-2.88, 3.14) D = (-2.88, 3.14) C = (1.42, 3.12) C = (1.42, 3.12) C = (1.42, 3.12) ?i?m B: DaGiac[D, C, 4] ?i?m B: DaGiac[D, C, 4] ?i?m B: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m M: Giao ?i?m c?a j, f ?i?m M: Giao ?i?m c?a j, f ?i?m M: Giao ?i?m c?a j, f ?i?m N: Giao ?i?m c?a k, g ?i?m N: Giao ?i?m c?a k, g ?i?m N: Giao ?i?m c?a k, g ?i?m P: B ??i x?ng qua l ?i?m P: B ??i x?ng qua l ?i?m P: B ??i x?ng qua l ?i?m H: Giao ?i?m c?a l, m ?i?m H: Giao ?i?m c?a l, m ?i?m H: Giao ?i?m c?a l, m
a. Từ giả thiết ta suy ra AN là đường trung trực của BP.
Xét \(\Delta APN\) và \(\Delta ABN\) có:
AB = AP; AN chung; NP = NB. Vậy thì \(\Delta APN=\Delta ABN\left(c-c-c\right)\Rightarrow\widehat{APN}=\widehat{ABN}=90^o\left(1\right).\)
Lại có \(\widehat{BAN}=\widehat{PAN}=25^o\Rightarrow\widehat{MAP}=90^o-20^o-25^o-25^o=20^o=\widehat{DAM}\)
Và \(AD=AP\left(=AB\right)\). Vậy nên \(\Delta ADM=\Delta APM\left(c-g-c\right)\Rightarrow\widehat{APM}=\widehat{ADM}=90^o\left(2\right)\)
Từ (1) và (2) ta suy ta M, P, N thẳng hàng.
b. Ta thấy ngay \(\widehat{MAN}=\widehat{MAP}+\widehat{NAP}=20^o+25^o=45^o.\)
\(\widehat{AMP}=90^o-20^o=70^o;\widehat{ANP}=90^o-25^o=65^o.\)
Mik k viết đc số 2 trên đầu..VD: AP2 nên đành viết như vậy nha
Tam giác vuông OAP có AP2=OA2-OP2
Trong tam giác vuông OAN2 có : AN2=OA2-ON2
Tương tự,các tam giác vuông : OBP,OBM,OCM,OCN
Ta có : AN2+BP2+CM2=( OA2-ON2 )+ ( OB2-OP2)+( OC2-OM2)= (OA2+OB2+OC2)-(ON2 +OP2+OM2)
AP2 + BM2+CN2=( OA2-0P2)+(OB2-OM2)+(OC2-ON2)=( OA2+OB2+OC2)-(ON2+OP2+OM2)
Suy ra: AN2+BP2+CM2=AP2+BM2+CN2
Tam giác vuông OAP có AP2=OA2-OP2
Trong tam giác vuông OAN2 có : AN2=OA2-ON2
Tương tự,các tam giác vuông : OBP,OBM,OCM,OCN
Ta có : AN2+BP2+CM2=( OA2-ON2 )+ ( OB2-OP2)+( OC2-OM2)= (OA2+OB2+OC2)-(ON2 +OP2+OM2)
AP2 + BM2+CN2=( OA2-0P2)+(OB2-OM2)+(OC2-ON2)=( OA2+OB2+OC2)-(ON2+OP2+OM2)
=> AN2+BP2+CM2=AP2+BM2+CN2
ĐỂ mik giúp
sai đề phải là :OP vuông với AB
AN2+BP2+CM2=AP2+BM2+CN2 ; như thế thì giải như dưới
Áp dụng định lý Pytago vào tam giác vuông AON và CON ta có:
\(AN^2=OA^2-ON^2;CN^2=OC^2-ON^2\Rightarrow CN^2-AN^2=OC^2-OA^2\left(1\right)\)
Tương tự ta có : \(AP^2-BP^2=OA^2-OB^2\left(2\right);MB^2-MC^2=OB^2-OC^2\left(3\right)\)
Từ \(\left(1\right)\) ; \(\left(2\right)\) ; \(\left(3\right)\) \(\Rightarrow\) \(AN^2+BP^2+CM^2=AP^2+BM^2+CN^2\left(đpcm\right)\)
B C P K M N A
a) Xet tam giac BKP va tam giac AKC ta co
AK=KP ( K la trung diem AP)
BK=KC( K la trung diem BC)
goc AKB= goc PKC ( 2 goc doi dinh)
--> tam giac BKP= tam giac AKC ( c-g-c)
--> goc KBP=goc KCA ( 2 goc tuong ung)
ma 2 goc nam o vi tri so le trong nen AC//BP
b) ta co:
goc NAM + goc BAC + goc MAC+ goc NAB=360
goc NAM + goc BAC +90 +90 =360
goc NAM + goc BAC =180
ma goc ABP + goc BAC =180 ( 2 goc trong cung phia va AC//BP)
nen goc NAM = goc ABP
ta co : AC= BP ( tam giac AKC = tam giac BKP)
AC = AM (gt)
--> BP =AM
Xet tam giac NAM va tam giac ABP ta co
goc NAM = goc ABP (cmt)
AN= AB( gt)
AM= BP (cmt)
--> tam giac NAM = tam giac ABP (c-g-c)
c) Keo dai KA cat NM tai H
ta co
goc HMA= goc APB ( tam giac NAM = tam giac ABP)
goc APB= goc PAC ( 2 goc so le trong va AC//BP)
---> goc HMA = goc APB
ta co:
goc HAM+ goc MAC+ goc CAP=180
goc HAM + 90 + goc CAP=180
goc HAM+ goc CAP =90
ma goc CAP = goc AMH ( cmt)
nen goc HAM+ goc AMH =90
Xet tam giac HAM ta co
goc HAM+ goc AMH + goc AHM =180 ( tong 3 goc trong tam giac )
90+ goc AHM=180
goc AHM =90
--> AK vuong goc MN tai H