K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2020

Đường tròn tâm \(I\left(1;-1\right)\) bán kính \(R=5\)

\(\overrightarrow{IN}=\left(6;4\right)\Rightarrow IN=2\sqrt{13}>R\Rightarrow N\) nằm ngoài đường tròn

Theo tính chất phương tích:

\(NE.NF=IN^2-R^2=27\)

\(\Rightarrow3NF^2=27\Rightarrow\left\{{}\begin{matrix}NF=3\\NE=9\end{matrix}\right.\) \(\Rightarrow EF=6\)

\(\Rightarrow d\left(I;EF\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=4\)

Gọi phương trình d có dạng \(a\left(x-7\right)+b\left(y-3\right)=0\)

\(\Leftrightarrow ax+by-7a-3b=0\)

\(d\left(I;d\right)=4\Leftrightarrow\frac{\left|a-b-7a-3b\right|}{\sqrt{a^2+b^2}}=4\)

\(\Leftrightarrow\left|3a+2b\right|=2\sqrt{a^2+b^2}\)

\(\Leftrightarrow9a^2+12ab+4b^2=4a^2+8ab+4b^2\)

\(\Leftrightarrow5a^2+4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\5a=-4b\end{matrix}\right.\) chọn \(\left(a;b\right)=\left(4;-5\right)\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y-3=0\\4x-5y-13=0\end{matrix}\right.\)

NV
5 tháng 5 2020

Đường tròn tâm \(I\left(1;-1\right)\) bán kính \(R=5\)

\(\overrightarrow{IM}=\left(1;-2\right)\Rightarrow IM=\sqrt{5}< R\)

\(\Rightarrow\) M nằm trong đường tròn

Do M là trung điểm AB, theo tính chất đường tròn \(\Rightarrow IM\perp AB\)

\(\Rightarrow\) Đường thẳng d nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-2\left(y+3\right)=0\Leftrightarrow x-2y-8=0\)

12 tháng 11 2019

Đáp án A

Đường tròn (C) có tâm 

Do đó:

 ở trong đường tròn.

Để A là trung điểm của  

là vectơ pháp tuyến của d nên d  có phương trình: -1 (x+ 4) + 1.( y-2) =0

Hay x- y + 6= 0.

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình

\((x-a)^2+(y-b)^2=R^2.\)

\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:

\(a-b+1=0 (1)\)

Hạ \(MH⊥AB\)\(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)

\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)

\(\Rightarrow R = \sqrt{2} \)

Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)

Ta có hệ : 

\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)

Giải hệ \(PT\) ta được: \(a=1;b=2\).

\(\rightarrow \)Vậy \((C) \)có  phương trình:\((x-1)^2+(y-2)^2=2\)

 

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv