Bài toán:  Cho các số thực a, b, c thỏa mãn a2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Ta có:a2+b2+c2\(\ge\)-ab-bc-ac

Thật vậy:

a2+b2\(\ge\)-2ab

b2+c2\(\ge\)-2bc

a2+c2\(\ge\)-2ac

Cộng vế theo vế, ta được:2(a2+b2+c2)\(\ge\)-2ab-2ac-2bc=>a2+b2+c2\(\ge\)-ab-bc-ac

M=a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)\(\ge\)2(a+b+c)

Lại có:2(a+b+c)\(\ge\)-a2-b2-c2-3

Suy ra:M\(\ge\)-a2-b2-c2-3=-4

Vậy GTNN của M=-4

9 tháng 5 2019

L​ê Hồ Trọng Tín ​  \(2\left(a+b+c\right)\ge-a^2-b^2-c^2-3\) Đẳng thức xảy ra khi a=b=c=-1 thay vào M không ra -4 nha, bài làm sai rồi

1.Hãy phân tích các đa thức sau thành nhân tửa) x2−2xy+x3yb) 7x2y2+14xy2−212yc) 10x2y+25x3+xy2 2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24. 3.Hãy phân tích các đa thức sau thành nhân tửa) x(x−2)+2(2−x)b) 4(x+1)3−x−1c) 5x(x−3)+(x−3)2−(x−3) 4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.5.Tìm xxa) 4x(x+1)=x+1b) 2x(x2+1)−2x2(x+1)=0 6.Chứng minh bình phương của 1 số nguyên...
Đọc tiếp

1.Hãy phân tích các đa thức sau thành nhân tử
a) x2−2xy+x3y
b) 7x2y2+14xy2−212y
c) 10x2y+25x3+xy2

 

2.Chứng minh với mọi số nguyên nn , (2n+1)3−(2n+1) chia hết cho 24.

 

3.Hãy phân tích các đa thức sau thành nhân tử
a) x(x−2)+2(2−x)
b) 4(x+1)3−x−1
c) 5x(x−3)+(x−3)2−(x−3)

 

4.Tính giá trị biểu thức: A=x3−2x2y+xy2 với =117,y=17.

5.Tìm xx
a) 4x(x+1)=x+1
b) 2x(x2+1)−2x2(x+1)=0

 

6.Chứng minh bình phương của 1 số nguyên lẻ luôn chia 8 dư 1.

 

7.Tính nhanh: 81.67+81.44−81.11

 

8.Chứng minh rằng các biểu thức sau luôn nhận giá trị không âm với mọi giá trị của biến
a) x(x+2)+2x+4
b) 3x(x+1)+3(x+1)+5

 

9.Chứng minh đẳng thức
a) (x−2)2+(x−2)=(x−1)2−(x−1)
b) (x3−27)−9(x−3)=x(x2−9)

 

10.Tìm 3 số nguyên liên tiếp biết rằng hiệu giữa tích 3 số với lập phương số ở giữa bằng 1

 

3
9 tháng 8 2020

Giúp mk!! 

9 tháng 8 2020

a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)

b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)

c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)

25 tháng 10 2020

khó thế nhờ (^o^)

Bài 1 : Cho a + b = 1 Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 Tính giá trị biểu thức A = x2018 + y 2019 Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H ....
Đọc tiếp

Bài 1 : Cho a + b = 1 

Tính M = a 3 + b3 + 3ab(a2+b2) + 6a2b2(a+b)

Bài 2 : Cho hai số dương x , y thỏa mãn x3+y3=3xy - 1 

Tính giá trị biểu thức A = x2018 + y 2019 

Bài 3 : Cho các số x , y thỏa mãn đẳng thức 5x2 + 5y2 + 8xy - 2x +2y +2 = 0 . Tính giá trị của biểu thức : M = ( x + y )2018 +( x-2)2019+(y+1)2020

Bài 4 : Cho tam giác ABC có goác A = 90 độ , AB < AC , đường cao AH . Gọi D là điểm đối xứng của A qua H . Đường thẳng kẻ qua D song song với AB cắt BC,AC lần ,lượt tại M,N.

a ) Tứ giác ABMD là hình gì ? Vì sao ?

b ) Chứng minh M là trực tâm tam giác ACD .

c )Gọi I là trung điiểm MC . Chứng minh :  góc HNI = 90 độ 

Bài 5 : Cho biểu thức : 

\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\left(ĐKXĐ:x\ne0,x\ne-5\right)\)

a ) Rút gọn biểu thức trên 

b ) Tìm giá trị của x để giá trị của biểu thức =1

0
9 tháng 9 2020

1. \(x^4+6x^3+11x^2+6x+1=0\)

\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)

\(\Leftrightarrow x^2+3x+1=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

10 tháng 9 2020

2. \(x^4+x^3-4x^2+x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)

+) ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

+) x2 + 3x + 1 = 0

<=> ( x + 3/2 )2 - 5/4 = 0

<=> ( x + 3/2 )2 = 5/4

<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)

24 tháng 8 2017

1.a/(x²+2x+1)(x+1)

=(x+1)(x²+2x+1)

=x(x²+2x+1)+1(x²+2x+1)

=x³+2x²+x+x²+2x+1

=x³+3x²+3x+1

c/(x-5)(x³-2x²+x-1)

=x(x³-2x²+x-1)-5(x³-2x²+x-1)

=x⁴-2x³+x²-1-5x³+10x²-5x+5

=x⁴-7x³+11x²+4-5x

=x⁴-7x³+11x²-5x+4

3.

Giá trị của x và y Giá trị của biểu thức(x+y) (x²-Xy+y²)
x=-10,y =2 -1008
x=-1,y=0 -1
x=2,y=-1 7
x=-0,5;y=1,25 -2,08125

6 tháng 9 2017

4).

(x-5)(3x+3)-3x(x-3)+3x+7

= 3x2+3x-15x-15-3x2+9x+3x+7

=(3x2-3x2)+(3x-15x+9x+3x)-15+7

=0 + 0 -8= -8

Vậy biểu thức được chứng minh

5). Sai đề rồi bn ơi!

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

18 tháng 9 2019

Câu 1: \(x^2+\frac{1}{x^2}-4x-\frac{4}{x}+6=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)

\(\text{Đặt a = }x+\frac{1}{x}\)

\(\Rightarrow a^2=\left(x+\frac{1}{x}\right)^2=x^2+2.x.\frac{1}{x}+\left(\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}\)

\(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)

Thay vào phương trình ta có:

\(\left(a^2-2\right)-4a+6=0\)

\(\Leftrightarrow a^2-2-4a+4=0\)

\(\Leftrightarrow a^2-4a+4=0\)

\(\Leftrightarrow\left(a-2\right)^2=0\)

\(\Leftrightarrow a-2=0\)

\(\Rightarrow x+\frac{1}{x}-2=0\)\(ĐKXĐ:x\ne0\)

\(\Leftrightarrow\frac{x^2+1-2x}{x}=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)
Vậy x=1

18 tháng 9 2019

Xực e lm đúng mà bn em bảo làm sai nữa chứ hmm :)