Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số nguyên có giá trị tuyệt đối < 45 là -44; -43; -42; ...-2 ; -1; 0; 1;2; ...; 42 ; 43; 44
=> có tất cả 89 số
=> có các số thứ tự là 1; 2;3;...; 89
Tổng các hiệu đó bằng :
[(-44) + (-43) + ...+ (-2)+ (-1) + 0 + 1 + 2 +...+ 43 + 44] - (1+2+3 +....+ 88+ 89)
= 0 - [(1 + 89). 89 : 2] = -4005
Các số nguyên có giá trị tuyệt đối nhỏ hơn 20 gồm 39 số là :
-19,-18,...,-1,0,1,...,18,19 (1)
Giả sử 39 số nói trên viết thành dãy số sau :
a1,a2,a3,...,a39
Cần tìm tổng :
S = ( a1 - 1 ) + ( a2 - 2 ) + ( a3 - 3 ) + ... + ( a39 - 39 )
= ( a1 + a2 + a3 + ... + a39 ) - ( 1 + 2 + 3 + ... + 39 )
Ta thấy tổng của dãy ( 1 ) bằng 0 nên a1 + a2 + a3 + ... + a39 = 0. Do đó ;
S = -(1 + 2 + 3 + ... + 39 ) = \(-\frac{40.39}{2}=-780\)
Các số nguyên có giá trị tuyệt đối nhỏ hơn 20 gồm 39 số là :
-19,-18,...,-1,0,1,...,18,19 (1)
Giả sử 39 số nói trên viết thành dãy số sau :
a1,a2,a3,...,a39
Cần tìm tổng :
S = ( a1 - 1 ) + ( a2 - 2 ) + ( a3 - 3 ) + ... + ( a39 - 39 )
= ( a1 + a2 + a3 + ... + a39 ) - ( 1 + 2 + 3 + ... + 39 )
Ta thấy tổng của dãy ( 1 ) bằng 0 nên a1 + a2 + a3 + ... + a39 = 0. Do đó ;
S = -(1 + 2 + 3 + ... + 39 ) = −40.392 =−780
k nha
Vì dãy số nằm trong khoảng từ 1-10 nên số thứ tự của nó có giá trị bằng chính nó
Ta có: Tổng của dãy là:
(1+1)+(2+2)+(3+3)+...+(10+10) = 2(1+2+3+...+10)=2.(10.11):2=110
Đáp số: 110
Do tổng của n số gấp đôi tổng của các số còn lại nên tổng đó bằng 2/3 tổng các số từ 1 đến 2015.
Ta tính tổng đó: \(S=\frac{2}{3}\left(\frac{\left(2015+1\right).2015}{2}\right)=1354080.\)
Gọi n số thỏa mãn yêu cầu đề bài là \(1\le a_1< a_2< ...< a_n\le2015.\)
Ta thấy \(a_1\ge1;a_2\ge a_1+1=2;...;a_n\ge n.\)
Vậy thì để tồn tại nhiều số nhất thì ta chọn : \(a_1=1;a_2=2;...;a_{n-1}=n-1;a_n\)
Tính tổng (n -1) số đầu tiên: \(S_{n-1}=\frac{\left(n-1+1\right)\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\le1354080\)
Ta chọn n max thỏa mãn điều kiện bên trên. Vậy n = 1645.
Vậy n max là 1645 với dãy số:
\(\hept{\begin{cases}a_1=1;a_2=2;...;a_{1644}=1644\\a_{1645}=1354080-\frac{1645.1644}{2}=1890\end{cases}}\)
Tương tự: \(a_n\le2015;a_{n-1}\le a_n-1=2014;...\)
Để chọn được n min thì \(\hept{\begin{cases}a_n=2015;a_{n-1}=2014;...;a_2=2015-n+2.\\a_1\end{cases}}\)
Tổng n - 1 số là : \(S_{n-1}=\frac{\left(2015+2015-n+2\right)\left(n-1\right)}{2}=\frac{\left(4032-n\right)\left(n-1\right)}{2}< 1354080\)
Vậy n min = 852.
Khi đó \(\hept{\begin{cases}a_2=1165;a_3=1166;...;a_{852}=2015\\a_1=1354080-\frac{851.3180}{2}=990\end{cases}}\)
Vậy n max = 1645 và n min = 852.
Điểm mấu chốt là nhận ra \(\hept{\begin{cases}1\le a_1;2\le a_2;...\\2015\ge a_n;2014\ge a_{n-1};...\end{cases}}\)