Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: a) Ta có: BA ⊥⊥AC (gt)
HD // AB (gt)
=> HD ⊥⊥AC => ˆHDA=900HDA^=900
Ta lại có: AC ⊥⊥AB (gt)
HE // AC (gt)
=> HE ⊥⊥AB => ˆHEA=900HEA^=900
Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^
Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)
ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)
=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2)
Từ (1) và (2) => ˆODA=ˆBODA^=B^
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)
=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)
hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900
=> AM⊥DEAM⊥DE(Đpcm)
c) (thiếu đề)
a: Xét tứ giác ADHP có
AD//HP
AP//HD
góc PAD=90 độ
Do đó: ADHP là hình chữ nhật
=>AH=DP
b: ΔABC vuông tại A có AM là đường trung tuyến
nên MA=1/2BC=MC=MB
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
c: góc QAP+góc QPA
=góc MAC+góc APD
=góc MCA+góc AHD
=góc ACB+góc ABC=90 độ
=>ΔQAP vuông tại Q
a: Ta có: DB\(\perp\)AB
AC\(\perp\)AB
Do đó: DB//AC
Xét ΔECA có DB//AC
nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b: Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)
Xét ΔAEI có DB//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)
Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)
=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)
Từ (1),(2),(3) suy ra EI=EK