Bài toán 1. So sán...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

Bài 1: 

\(2009^{20}=\left(2009^2\right)^{10}=\left(2009.2009\right)^{10}\)

\(2009.2009^{10}=\left(10001.2009\right)^{10}\)

Ta thấy:

\(2009< 10001\Rightarrow2009.2009< 1001.2009\)

\(\Rightarrow\left(2009.2009\right)^{10}< \left(10001.2009\right)^{10}\)

\(\Rightarrow2009^{20}< 20092009^{10}\)

Bài 3: 

a) Vì \(x,y\in Z\Rightarrow25-y^2⋮8\Rightarrow25-y^2=\left\{0;8;16;24\right\}\)

\(\Rightarrow\hept{\begin{cases}y=\pm5\Rightarrow x=0\\y=\sqrt{17}\left(lo\text{ại}\right)\end{cases}}\)

\(\hept{\begin{cases}y=\pm3\Rightarrow x=2011\\y=\pm1\Rightarrow x=2012\end{cases}}\)

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow x^3y-xy^3=1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)

\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)

Ta có: 1997 là số nguyên tố; xy(x+y)(x-y) là hợp số

\(\Rightarrow\left(x;y\right)\in\varnothing\) 

c) \(x+y+9=xy-7\)

\(\Rightarrow x+y+16=xy\Rightarrow x+16=xy-y=y\left(x-1\right)\)

\(\Rightarrow y=\frac{x+16}{x-1}\left(x\ne1\right)\)

Mà do y thuộc Z\(\Rightarrow\frac{x+16}{x-1}\in Z\Rightarrow x+16⋮x-1\Rightarrow\left(x-1\right)+17⋮x-1\Rightarrow x-1\in\text{Ư}\left(17\right)=\left\{\pm1;\pm17\right\}\)

\(x\in\left\{0;2;-16;18\right\}\)(Thỏa mãn do khác 1)

+)  Nếu \(x=0\Rightarrow16+y=0\Rightarrow y=-16\)

+) Nếu \(x=2\Rightarrow18+y=2y\Rightarrow y=18\)

+) Nếu \(x=-16\Rightarrow y=-16y\Rightarrow y=0\)

+) Nếu \(x=18\Rightarrow y=2\)

Vậy \(\left(x;y\right)=\left(0,-16\right);\left(2;18\right);\left(-16;0\right);\left(18;2\right)\)

Bài 4:

n số \(x_1,x_2,x_3,....,x_n\)mỗi số nhận giá trị 1 hoặc -1

\(\Rightarrow\)n tích \(x_1.x_2+x_2.x_3+...+x_n.x_1\)mỗi tích bằng 1 hoặc -1

Mà: \(x_1.x_2+x_2.x_3+...+x_n.x_1=0\)

=> Số tích có giá trị bằng 1 hoặc -1 và bằng \(\frac{n}{2}\)

\(\Rightarrow n⋮2\)(n chẵn)

Xét \(A=\left(x_1.x_2\right).\left(x_2.x_3\right)....\left(x_n.x_1\right)\)

=> x12.x22....xn2=1>0

=> Số thừa số -1 là số chẵn

=>n/2 chẵn

=> n chia hết cho 4(đpcm)

21 tháng 9 2020

Bài 6:

Hướng dẫn: giả sử \(A\left(x\right)=a_o+a_1x+a_2x^2+...+a_{4018}x^{4018}\)

Khi đó A(1)\(=a_o+a_1+a_2+...+a_{4018}\)

do A(1) =0 nên \(a_o+a_1+a_2+...+a_{4018}=0\)

Bài 7:

Gợi ý: Đặt x=111.1( n chữ số 1)

Ta có: 10n=9x+1

=> a=x10n+x=x(9x+1)+x;b=10x+1;c=6x

Ta có: a+b+c+8=x(9x+1)+x+10x+1+6x+8=9x2+18x+9=(3x+3)2

Cách khác: Quy về dạng tổng quát : a=(102n-1):9,...

Bài 9:

- Những phân số lớn hơn a nhỏ hơn b có mẫu là 7 là:

\(a+\frac{1}{7};a+\frac{2}{7};a+\frac{3}{7};...;b-\frac{2}{7};b-\frac{1}{7}\)

Tổng của chúng là: \(A=\left(a+\frac{1}{7}\right)+\left(a+\frac{2}{7}\right)+...+\left(b-\frac{2}{7}\right)+\left(b-\frac{1}{7}\right)\)

\(=\frac{1}{7}\text{[}\left(7a+1\right)+\left(7a+2\right)+...+\left(7b-2\right)+\left(7b-1\right)\text{]}\)

\(=\frac{1}{7}.\frac{1}{2}\text{[}\left(7a+1\right)+\left(7b-1\right)\text{]}\text{[}\left(7b-1\right)-\left(7a+1\right)+1\text{]}\)

\(=\frac{1}{14}\left(7a+7b\right)\left(7b-7a-1\right)=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)\)

- Những phân số lớn hơn a nhỏ hơn b sau khi rút gọn(vì 7 là số nguyên tố) là:

a+1;a+2;...;b-2;b-1

Tổng của chúng là: \(B=\left(a+1\right)+\left(a+2\right)+...+\left(b-2\right)+\left(b-1\right)\)

\(=\frac{1}{2}\text{[}\left(a+1\right)+\left(b-1\right)\text{]}\text{[}\left(b-1\right)-\left(a+1\right)+1\text{]}\)

\(=\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}\)

Tổng phải tìm là: \(A-B=\frac{1}{2}\left(a+b\right)\left(7b-7a-1\right)-\frac{1}{2}\text{[}\left(a+b\right)\text{]}\text{[}b-a-1\text{]}=3\left(a^2-b^2\right)\)

Bài 10:

Đặt \(n=2k-1\left(k\in N,k>1\right)\). Ta có:

\(A=1+3+5+...+\left(2k-1\right)=\frac{1+\left(2k-1\right)}{2}.k=k^2\)

Vậy A là số chính phương

DD
27 tháng 6 2021

Bài 3: 

a) \(25-y^2=8\left(x-2009\right)\)

\(\Rightarrow25-y^2⋮8\Leftrightarrow y^2\equiv1\left(mod8\right)\Leftrightarrow y=2k+1,k\inℤ\)

\(25-\left(2k+1\right)^2=8\left(x-2009\right)\)

\(\Leftrightarrow x=2006-\frac{k^2+k}{2}\)

b) \(x^3y=xy^3+1997\)

\(\Leftrightarrow xy\left(x^2-y^2\right)=1997=1.1997\)

mà \(x,y\inℤ\)nên 

\(\hept{\begin{cases}x^2-y^2=1\\xy=1997\end{cases}}\)hoặc \(\hept{\begin{cases}x^2-y^2=-1\\xy=-1997\end{cases}}\)

Cả hai hệ phương trình này đều không có nghiệm nguyên nên phương trình đã cho không có nghiệm nguyên. 

c) \(x+y+9=xy-7\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=17\)

mà \(x,y\inℤ\)nên ta có bảng sau: 

x-1117-1-17
y-1171-17-1
x2180-16
y182-160
DD
27 tháng 6 2021

Bài 1: 

\(2009^{20}=\left(2009^2\right)^{10}< \left(2009.10001\right)^{10}=20092009^{10}\)

Bài 2: 

\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...1+\frac{2}{2007}+1+\frac{1}{2008}\)

\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(=2009A\)

\(\Rightarrow\frac{A}{B}=\frac{1}{2009}\)

Bài 1: Khoanh tròn vào đáp án đúng trong các đáp án sau:Kết quả của biểu thức:  là:Bài 2: Tìm x, biết:Bài 3: Kết quả của biểu thức  là:Bài 4: Tìm x, biết:Bài 5: So sánh: 224 và 316Bài 6: Tìm x, biết:a) (x+ 5)3 = - 64 b) (2x- 3)2 = 9Bài 7: Tính: Bài 8: Các tỉ lệ thức lập được từ đẳng thức: 12.20 =15.16 là:Bài 9: Tìm tỉ số x/y, biết x, y thoả mãn:Bài 10: Tìm x, y biết: x/y = 2/5 và x + y =...
Đọc tiếp

Bài 1: Khoanh tròn vào đáp án đúng trong các đáp án sau:

Kết quả của biểu thức: Bộ đề ôn tập Toán lớp 7 là:

Bộ đề ôn tập Toán lớp 7

Bài 2: Tìm x, biết:
Bộ đề ôn tập Toán lớp 7

Bài 3: Kết quả của biểu thức Bộ đề ôn tập Toán lớp 7 là:
Bộ đề ôn tập Toán lớp 7

Bài 4: Tìm x, biết:
Bộ đề ôn tập Toán lớp 7

Bài 5: So sánh: 224 và 316

Bài 6: Tìm x, biết:

a) (x+ 5)3 = - 64 b) (2x- 3)2 = 9

Bài 7: Tính: Bộ đề ôn tập Toán lớp 7

Bài 8: Các tỉ lệ thức lập được từ đẳng thức: 12.20 =15.16 là:

Bộ đề ôn tập Toán lớp 7

Bài 9: Tìm tỉ số x/y, biết x, y thoả mãn:

Bài 10: Tìm x, y biết: x/y = 2/5 và x + y = 70

Bài 11. Tìm sai lầm trong lời giải sau và sửa lại chỗ sai:

a. √81 = 9; √0,49 = 0,7; √0,9 = 0,3

b. (√5)2 = 5; √-(13)2 = -13; √1024 = 25

c. √0,01 = 0,1; √121 = 112; √100 = 10

Bài 12: Tìm x ϵ Q, biết:

a. x2 + 1 = 82

b. x2 + 7/4 = 23/4

c. (2x+3)2 = 25

                  ~ai làm đúng thì tick nha~

0
 Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ...
Đọc tiếp

 

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

B. TOÁN NÂNG CAO LỚP 7 PHẦN HÌNH HỌC

Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈  AE). Chứng minh rằng Δ MHK vuông cân.

Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.

Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.

Bài toán 16. Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:

a. ΔABC = ΔMDE

b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.

Bài toán 17. Cho ABC vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = BA; CN = CA. Tính góc MAN

Bài toán 18. Cho đoạn thẳng MN = 4cm, điểm O nằm giữa M và N. Trên cùng một nửa mặt phẳng bờ MN vẽ các tam giác cân đỉnh O là OMA và OMB sao cho góc ở đỉnh O bằng 450. Tìm vị trí của O để AB min. Tính độ dài nhỏ nhất đó

THANG 100 DIEM 

0
10 tháng 10 2021

Ta có :

200920 = (20092)10 = (2009.2009)10

2009200910 = (2009.10 001)10

Vì 2009.2009 < 2009. 10 001 nên 200920 < 2009200910

10 tháng 10 2021

25 - y² = 8(x - 2009)²

ta có: VP = 8(x - 2009)² ≥ 0, VP chia hết cho 8 (do x,y thuộc Z)

VT = 25 - y² ≥ 25

→ TH1: 25 - y² = 0 → y = ± 5 → x = 2009 (thỏa mãn)

TH2: 25 - y² = 8 → y = ± √17 (loại)

TH3: 25 - y² = 16 → y = ± 3

→ (x - 2009)² = 2 → x - 2009 = ± √2 (loại)

TH4: 25 - y² = 24 → y = ± 1

→ (x - 2009)² = 3 → x - 2009 = ± √3 (loại)

Vậy x = 2009 và y = + 5

Mà x,y thuộc N (tập hợp số tự nhiên) nên

x = 2009 và y = 5

Bài 1: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.Bài 3: Cho hàm số f(x) = ax2 + bx + c (a, b, c ∈ ). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.Bài 4: Cho đa thức f(x)...
Đọc tiếp

Bài 1: Cho đa thức f(x) = ax3 + 2bx2 + 3cx + 4d, (a ≠ 0) với a, b, c, d là các số nguyên. Chứng minh không thể tồn tại f(7) = 72 và f(3) = 42.

Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.

Bài 3: Cho hàm số f(x) = ax2 + bx + c (a, b, c ∈ \mathbb{Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.

Bài 4: Cho đa thức f(x) = ax3 + bx2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.

Bài 5: Chứng minh rằng đa thức P\left( x \right) = {x^3} - x + 5 không có nghiệm nguyên.

Bài 6: Tìm giá trị nhỏ nhất của biểu thức {\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2}

Bài 7: Tìm n nguyên dương sao cho 2n - 3 ⋮ n + 1

Bài 8: Cho đa thức M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017. Tính giá trị của đa thức M biết x + y - 2 = 0.

0
 Những bài toán nâng cao lớp 7A. PHẦN ĐẠI SỐBài toán 1. So sánh:  và Bài toán 2. Tính tỉ số  biết:Bài toán 3. Cho x, y, z, Chứng minh rằng:  có giá tri không phải là số tư nhiên.Bài toán 4. Tìm x ;  biết:b. c. x+y+9=xy-7Bài toán 5. Tìm x biếtab. Bài toán 6. Chứng minh rằng:  thì  chia hết cho 4 .Bài toán 7. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 +...
Đọc tiếp

 

Những bài toán nâng cao lớp 7

A. PHẦN ĐẠI SỐ

Bài toán 1. So sánh: 2009^{20} và 20092009^{10}.

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}

B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+\ldots+\frac{2}{2007}+\frac{1}{2008}

Bài toán 3. Cho x, y, z, t \in \mathrm{N}^{*}.

Chứng minh rằng: \mathrm{M}=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t} có giá tri không phải là số tư nhiên.

Bài toán 4. Tìm x ; y \in Z biết:

a. 25-y^{2}=8(\mathrm{x}-2009)

b. x^{3} y=x y^{3}+1997

c. x+y+9=xy-7

Bài toán 5. Tìm x biết

a. |5(2 x+3)|+|2(2 x+3)|+|2 x+3|=16

b. \left|x^{2}+\right| 6 x-||2=x^{2}+4.

Bài toán 6. Chứng minh rằng: \frac{3}{1^{2} .2^{2}}+\frac{5}{2^{2} \cdot 3^{2}}+\frac{7}{3^{2} \cdot 4^{2}}+\ldots+\frac{19}{9^{2} \cdot 10^{2}}<1

\mathrm{x}_{n \cdot} \mathrm{X}_{1}=0 thì \mathrm{n} chia hết cho 4 .

Bài toán 7. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 8 . Chứng minh rằng:

\mathrm{S}=\frac{1}{2^{2}}-\frac{1}{2^{4}}+\frac{1}{2^{6}}-\ldots+\frac{1}{2^{4 n-2}}-\frac{1}{2^{4 n}}+\ldots+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}<0,2

Bài toán 9.  Tính giá tri của biểu thức \mathrm{A}=x^{n}+\frac{1}{x^{n}} giả sử x^{2}+x+1=0.

Bài toán 10. Tìm max của biểu thức: \frac{3-4 x}{x^{2}+1}.

Bài toán 11. Cho \mathrm{x}, y, \mathrm{z} là các số dương. Chứng minh rằng

\mathrm{D}=\frac{x}{2 x+y+z}+\frac{y}{2 y+z+x}+\frac{z}{2 z+x+y} \leq \frac{3}{4}

Bài toán 12. Tìm tổng các hê số của đa thức nhân đươc sau khi bỏ dấu ngoăc trong biểu thức:

\mathrm{A}(\mathrm{x})=(3 - \left.4 x+x^{2}\right)^{2004} \cdot\left(3+4 x+x^{2}\right)^{2005}

Bài toán 13. Tìm các số a, b, c nguyên dương thỏa mãn: a^{3}+3

a^{2}+5=5^{b} và \mathrm{a}+3=5^{c}

Bài toán 14. Cho \mathrm{x}=2005. Tính giá tri của biểu thức:

x^{2005}-2006 x^{2004}+2006 x^{2003}-2006 x^{2002}+\ldots-2006 x^{2}+2006 x-1

Bài toán 15. Rút gọn biểu thức:\mathrm{N}=\frac{x|x-2|}{x^{2}+8 x-20}+12 x-3

Bài toán 16. Trong 3 số x, y, z có 1 số dương, 1 số âm và một số 0 . Hỏi mỗi số đó thuộc loài nào biết: |x|=y^{3}-y^{2} z

Bài toán 17. Tìm hai chữ số tận cùng của tổng sau: \mathrm{B}=3+3^{2}+3^{3}+3^{4}+\ldots+3^{2009}

Bài toán 18. Cho 3 \mathrm{x}-4 \mathrm{y}=0. Tìm min của biểu thức: \mathrm{M}=x^{2}+y^{2}

Bài toán 19. Tìm x, y, z biết:\frac{x^{2}}{2}+\frac{y^{2}}{3}+\frac{z^{2}}{4}=\frac{x^{2}+y^{2}+z^{2}}{5}.

Bài toán 20. Tìm x, y biết rằng: x^{2}+y^{2}+\frac{1}{x^{2}}+\frac{1}{y^{2}}=4

Bài toán 21. Cho a là số gồm 2n chữ số 1, \mathrm{~b} là số gồm \mathrm{n}+1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a +\mathrm{b}+\mathrm{c}+8là số chính phương.

Bài toán 22. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho \mathrm{ab}+4 là số chính phương.

Bài toán 23. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện \overline{a b}: \overline{c d}=a: c thì \overline{a b b b}: \overline{b b b c}=a: c.

Bài toán 24. Tìm phân số \frac{m}{n} khác 0 và số tự nhiên k, biết rằng\frac{m}{n}=\frac{m+k}{n k}.

Bài toán 25. Cho hai số tự nhiên a và \mathrm{b}(\mathrm{a}<\mathrm{b}). Tìm tổng các phân số tối giản có mẫu bằng 7 , mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 26. Chứng minh rằng:\mathrm{A}=1+3+5+7+\ldots+\mathrm{n} là số chính phương (n lẻ).

Bài toán 27. Tìm n biết rằng: n^{3}-n^{2}+2 n+7 chia hết cho n^{2}+1.

Bài toán 28. Chứng minh rằng: \mathrm{B}=2^{2^{2 n+1}}+3 là hợp số với mọi số nguyên dương n

Bài toán 29. Tìm số dư khi chia\left(\mathrm{n}^{3}-1\right)^{111}. (n \left.^{2}-1\right)^{333}cho n

Bài toán 30. Tìm số tự nhiên n để 1^{n}+2^{n}+3^{n}+4^{n} chia hết cho 5 .

Bài toán 31 .

a. Chứng minh rằng: Nếu a không là bội số của 7 thì \mathrm{a}^{6}-1 chia hết cho 7 .

b. Cho \mathrm{f}(\mathrm{x}+1)\left(\mathrm{x}^{2}-1\right)=\mathrm{f}(\mathrm{x})\left(\mathrm{x}^{2}+9\right) có ít nhất 4 nghiệm.

c. Chứng minh rằng: \mathrm{a}^{5}-\mathrm{a} chia hết cho 10 .

Bài toán 32. Tính giá trị của biểu thức: \mathrm{A}=5 y^{4}+7 x-2 z^{5} tai \left(\mathrm{x}^{2}-1\right)+(\mathrm{y}-\mathrm{z})^{2}=16.

Bài toán 33. Chứng minh rằng:

a. 0,5\left(2007^{2005}-2003^{2003}\right) là một số nguyên.

b. \mathrm{M}=\frac{1986^{2004}-1}{1000^{2004}-1} không thể là số nguyên.

c. Khi viết dưới dạng thập phân thì số hữu tỉ \left(\frac{9}{11}-0,81\right)^{2004} có ít nhất 4000 chữ số 0 đầu tiên sau dấu phẩy

                      HET .................................

0
15 tháng 11 2021

chịu

:::)))

15 tháng 11 2021

Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)

\(n+8⋮n^2+1\)

\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)

\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)

Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6A. 1 ...
Đọc tiếp

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?

A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2

Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:

A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2

Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6

A. 1                                 B. -2                            C. 0                           D. -6

Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:

A. n = 2                           B. n = 3                       C. n = 1                      D. n = 0

Câu 15: Tính (155 : 55).(35 : 65)

A. 243/32                        B. 39/32                      C. 32/405                   D. 503/32

Câu 16: Cho tam giác ABC cân tại A, có \widehat{A}=70^0. Số đo góc \widehat{B} là:

A. 50^0B. 60^0C. 55^0D. 75^0

Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.

A. 6cm; 8cm; 10cm
B. 5cm; 7cm; 13cm
C. 2,5cm; 3,5cm; 4,5cm
D. 5cm; 5cm; 8cm
Câu 18: Tìm x, biết: \frac{-8}{11}.x=\frac{2}{5}.\frac{1}{4}

A. x=\frac{15}{80}B. x=-\frac{2}{75}C. x=\frac{11}{90}D. x=-\frac{11}{80}

Câu 19: Giá trị có tần số lớn nhất được gọi là:

A. Mốt của dấu hiệu
B. Tần số của giá trị đó
C. Số trung bình cộng
D. Số các giá trị của dấu hiệu

Câu 20: Hệ số cao nhất và hệ số tự do của đa thức

P(x) = -x^4 + 3x^2 + 2x^4 - x^2 + x^3 - 3x^3 lần lượt là:

A. 1 và 2
B. 2 và 0
C. 1 và 0
D. 2 va 1
Câu 21: Cho đa thức P(x) = \frac{1}{2}x^3 – 4x^2 -5x^3 + x^2 + 5x – 1.

Tìm đa thức Q(x) biết P(x) + Q(x) = x^3 + x^2 + x - 1 kết quả là:

A. \frac{3}{2}{{x}^{3}}+4{{x}^{2}}-4x-7B. \frac{1}{2}{{x}^{3}}+2{{x}^{2}}+4x-1
C. \frac{1}{2}{{x}^{3}}-2{{x}^{2}}-4x+1D. \frac{3}{2}{{x}^{3}}+4{{x}^{2}}+4x+7

Câu 22: Giá trị của x trong phép tính P(x) = x^2+1 là:

A. 0                               B. 0,5                     C. 1                          D. -1
Câu 23:

Để tìm nghiệm của đa thức , hai bạn Lý và Tuyết thực hiện như sau:

Lý : Ta có, với x = -1; P(-1) = -12 + 1 = -1 + 1 = 0.

Vậy x = -1 là nghiệm của đa thức P(x) = x2 + 1.

Tuyết : Ta có : x^2 \ge  0 \Rightarrow x^2 + 1 > 0

Vậy đa thức P(x) = x2 + 1 vô nghiệm.

Đánh giá bài làm của hai bạn:

A. Lý sai, Tuyết đúng
B. Lý đúng, Tuyết sai
C. Lý sai, Tuyết sai
D. Lý đúng, Tuyết đúng

Câu 24: Tính: 3,15\left( 3\frac{1}{4}:\frac{1}{2} \right)+2,15\left( 1-1\frac{1}{2} \right)=?

A. 19,25                      B. 19,4                  C. 16,4                          D. 18,25

Câu 26: Giá trị của đa thức C tại x = 2; y = -1 là:

A. -6                        B. 14                          C. 6                           D. -14

Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:

A. 12 (đvdt)               B. 5 (đvdt)                C. 6 (đvdt)                 D. 10 (đvdt)

Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:

A. \sqrt{39}cm               B. 12cm                    C. 10cm                   D. \sqrt{89}cm
Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả

A. a = 12; b = 21; c = 27
B. a = 2; b = \frac{7}{2}; c = \frac{9}{2}
C. a = 20; b = 35; c = 45
D. a = 40; b = 70; c = 90

Câu 30: Thu gọn đơn thức -{{x}^{3}}{{\left( xy \right)}^{4}}\frac{1}{3}{{x}^{2}}{{y}^{3}}{{z}^{3}} kết quả là:

A. \frac{1}{3}{{x}^{8}}{{y}^{6}}{{z}^{3}}B. \frac{1}{3}{{x}^{9}}{{y}^{5}}{{z}^{4}}C. -3{{x}^{8}}{{y}^{4}}{{z}^{3}}

D. -\frac{1}{3}{{x}^{9}}{{y}^{7}}{{z}^{3}}

 

phần cuối nè

4
11 tháng 9 2021

Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?

A. -5/6                             B. -2/3                      C. 3/8                          D. 3/2

Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:

A. n = 4                           B. n = 1                     C. n = 3                      D. n = 2

Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6

A. 1                                 B. -2                            C. 0                           D. -6

Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:

A. n = 2                           B. n = 3                       C. n = 1                      D. n = 0

Câu 15: Tính (155 : 55).(35 : 65)

A. 243/32                        B. 39/32                      C. 32/405                   D. 503/32

Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.

A. 6cm; 8cm; 10cm     B. 5cm; 7cm; 13cm      C. 2,5cm; 3,5cm; 4,5cm         D. 5cm; 5cm; 8cm

Câu 19: Giá trị có tần số lớn nhất được gọi là:

A. Mốt của dấu hiệuB. Tần số của giá trị đóC. Số trung bình cộngD. Số các giá trị của dấu hiệu

Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:

A. 12 (đvdt)               B. 5 (đvdt)                C. 6 (đvdt)                 D. 10 (đvdt)

Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:

               B. 12cm                    C. 10cm             \(\sqrt{89}\)       

 Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả

A. a = 12; b = 21; c = 27     B. a = 2;           C. a = 20; b = 35; c = 45          D. a = 40; b = 70; c = 90

11 tháng 9 2021

iq .................. vô cực

16 tháng 6 2021

Chiều nay mk chốt đơn

16 tháng 6 2021

sao giống đề của mình vậy :o