\(\dfrac{15-3n}{n+2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:

$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$

Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất

Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.

Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1

$\Rightarrow n+2=1$

$\Rightarrow n=-1$

------------------------------------

$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$

Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất

Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất

Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1

$\Rightarrow 2n+1=1$

$\Rightarrow n=0$

 

21 tháng 4 2019

a. Để \(A=\frac{2n-7}{n-5}\in Z\)thì \(n\in Z\)

\(A=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}\)

\(=2+\frac{3}{n-5}\)

Để \(A\in Z\)thì \(\frac{3}{n-5}\)

\(\Rightarrow n-5\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{2;4;6;8\right\}\)

22 tháng 3 2019

ĐÚNG RỒI NHA NHƯNG MÀ HƠI THIẾU

22 tháng 3 2019

đúng rồi bạn ơi !!!

mẹ mình là giáo viên dạy toán. Mình hỏi mẹ, mẹ nói là đúng rồi.

13 tháng 3 2018

*Để A là phân số thì \(n-3\ne0\Rightarrow\) \(n\ne3\) (\(n\in Z\))

*Ta có: \(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}=\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)

\(\Rightarrow\) \(A\in Z\) khi \(\dfrac{4}{n-3}\in Z\)

\(\Rightarrow4⋮n-3\)

hay \(n-3\inƯ\left(4\right)\)

\(\Rightarrow\) \(n-3\in\left\{-4;-2;-1;1;2;4\right\}\)

Ta có bảng sau:

n-3 -4 -2 -1 1 2 4
n -1 1 2 4 5 7

Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\)

15 tháng 3 2018

n thuộc { 1,-1,2,-2,4,-4}

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

21 tháng 2 2020

Ta có B =(10/2n-2)+(n+3/2n-2)

B=13+n/2n-2

2B=26+2n/2n-2

2B=(2n-2/2n-2)+(28/2n-2)

2B=1+(28/2n-2)

Để B nhỏ nhất thì 2n-2<0 và là lớn nhất 

<=>n<-1 và là lớn nhất 

=>n=-1

=>B=-3

Mk viết hơi khó hiểu nên bn chịu khó dịch nhé! 

21 tháng 2 2020

Thanks bn nha

29 tháng 4 2020

ko bt nha ko tên

29 tháng 4 2020

@phan thi ly na bạn ko biết comment làm j dị

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

5 tháng 4 2019

\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất

\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)

\(\Leftrightarrow n=3\)

Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)

Vậy MAX A =9 \(\Leftrightarrow x=3\)

(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )