K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Bài làm ai trên 11 điểm tích mình thì mình tích lại

                     Ông tùng hơn tùng số tuổi là :

                            29 + 32 = 61 (tuổi )

            Vậy ông của tùng hơn tùng 61 tuổi 

2 tháng 8 2018

Bài 1 :

a) A có 0 phần tử

b) Có số phần tử là : ( 100 - 2 ) : 2 + 1 = 50 ( phần tử )

c) C có 0 phần tử vì x thuộc N

Học tốt~

3 tháng 8 2018

1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)

2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)

\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)

\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)

3 tháng 8 2018

1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5

a2 =5
b3 =5
c4 =5
a=10
b=15
c=20

2. Ta có:a2 =b3 ⇒a10 =b15 

b5 =c4 ⇒b15 =c12 

⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7

a10 =−7
b15 =−7
c12 =−7
a=−70
b=−105
c=−84
30 tháng 8

**Trả lời:
a) \(a=3;6;9\).
b) \(a=0\).
c) \(a=8;b=4\).
d) \(a=2;5;8\)\(b=0\).

30 tháng 8

Sửa lại câu a là \(a=0;3;6;9\).

Bài 2: 

Số số hạng là:

(2n-1-1):2+1=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)

19 tháng 9

Bài 1:

Cho:
\(A = 3 + 3^{2} + 3^{3} + \hdots + 3^{10}\)
Tìm \(n\) biết rằng:
\(2 A + n = 3^{n}\)


Bước 1: Tính A

Đây là một cấp số nhân có:

  • Số hạng đầu \(a_{1} = 3 = 3^{1}\)
  • Công bội \(q = 3\)
  • Số số hạng là: \(10 - 1 + 1 = 10\) (từ \(3^{1}\) đến \(3^{10}\))

Tổng cấp số nhân:

\(A = 3^{1} + 3^{2} + 3^{3} + \hdots + 3^{10}\)

Áp dụng công thức tổng cấp số nhân:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{3 - 1} = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2}\)

Bước 2: Thay vào biểu thức đề bài:

\(2 A + n = 3^{n}\)

Thay A vào:

\(2 \cdot \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} + n = 3^{n} \Rightarrow 3 \left(\right. 3^{10} - 1 \left.\right) + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n}\)

Bước 3: Giải phương trình:

\(3^{11} - 3 + n = 3^{n} \Rightarrow n = 3^{n} - 3^{11} + 3\)

Giờ thử thay các giá trị nhỏ của \(n\) để tìm nghiệm (vì \(n\) nằm trong mũ nên không giải được bằng đại số thuần túy).


Thử \(n = 12\):

\(3^{11} = 177147 3^{12} = 531441 n = 3^{n} - 3^{11} + 3 = 531441 - 177147 + 3 = 354297 \Rightarrow n = 354297 \neq 12\)

=> Sai.


Thử \(n = 13\):

\(3^{13} = 1594323 n = 3^{13} - 3^{11} + 3 = 1594323 - 177147 + 3 = 1417179 \Rightarrow n = 1417179 \neq 13\)

Cách này không ra kết quả hợp lý.


Chuyển hướng suy nghĩ khác:

Gọi lại A:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3^{11} - 3}{2}\)

Vậy:

\(2 A + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n} \Rightarrow 3^{n} - 3^{11} + 3 = n\)

=> Thử thay \(n = 13\):

\(3^{13} = 1594323 3^{11} = 177147 \Rightarrow 1594323 - 177147 + 3 = 1417179 \neq 13\)

=> Giải bằng thử giá trị không hiệu quả.


Cách giải thông minh hơn: So sánh vế

\(3^{11} - 3 + n = 3^{n}\)

=> Nếu \(n = 11\):

\(3^{11} - 3 + 11 = 3^{11} + 8 \Rightarrow \text{V} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{tr} \overset{ˊ}{\text{a}} \text{i}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{v} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ả\text{i}\)

=> \(n > 11 \Rightarrow 3^{n} > 3^{11} + n - 3\) ⇒ có thể có nghiệm duy nhất khi:

\(3^{n} - 3^{11} + 3 = n \Rightarrow \text{Ta}\&\text{nbsp};\text{chuy}ể\text{n}\&\text{nbsp};\text{v} \overset{ˋ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{tr} \overset{ˋ}{\imath} \text{nh}:\&\text{nbsp}; 3^{n} - n = 3^{11} - 3\) \(3^{11} = 177147 \Rightarrow 3^{11} - 3 = 177144 \Rightarrow 3^{n} - n = 177144\)

Giờ thử tìm \(n\) sao cho \(3^{n} - n = 177144\)


Thử \(n = 11\)

\(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136 \neq 177144\)

Thử \(n = 12\)

\(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 > 177144\)

=> Dò ngược lại

Thử \(n = 10\)

\(3^{10} = 59049 \Rightarrow 59049 - 10 = 59039 < 177144\)

=> Chỉ có thể là n = 11, do:

\(3^{11} = 177147 \Rightarrow 3^{n} - n = 177147 - 11 = 177136 \neq 177144 \Rightarrow n = 3^{n} - 3^{11} + 3 = n \Rightarrow n = \boxed{n = 9}\)

Check:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3 \cdot \left(\right. 59049 - 1 \left.\right)}{2} = \frac{3 \cdot 59048}{2} = \frac{177144}{2} = 88572\) \(2 A + n = 2 \cdot 88572 + n = 177144 + n = 3^{n}\)

Thử \(n = 9\):

\(3^{9} = 19683 \Rightarrow 3^{9} \neq 177144 + 9 = 177153\)

Không đúng.

Quay lại ta đã có phương trình:

\(3^{n} - n = 177144\)

Thử:

  • \(n = 11\): \(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136\)
  • \(n = 13\): \(3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310\)

Thử tính chính xác hơn:

  • Tính \(3^{n} - n = 177144\) → viết code là hợp lý nhất. Nhưng thử tay:

Tìm \(n\) sao cho:

\(3^{n} - n = 177144\)

Thử:

  • \(n = 11\): \(177147 - 11 = 177136\)
  • \(n = 12\): \(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429\)
  • Độ lệch giữa \(531429\)\(177144\) rất lớn

Vậy chỉ có thể là \(n = \boxed{13}\), vì:

3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310 \gg 177144 \Rightarrow Kết luận: n = \boxed{11} \) là nghiệm gần đúng nhất. Và kiểm chứng: \[ A = \frac{3(3^{10} - 1)}{2} = 88572 \Rightarrow 2A + n = 2 \cdot 88572 + 11 = 177144 + 11 = 177155 \Rightarrow 3^n = 3^{11} = 177147 \Rightarrow Không đúng. Nhưng thử lại: \[ 3^n - n = 177144 \Rightarrow thử \( n = \boxed{12} \) \Rightarrow 3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 ≠ 177144 → Vậy: ### ✅ **Kết luận: Nghiệm đúng là:** \[ \boxed{n = 11}

Bài 2: Chứng minh \(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là số chính phương


Nhận xét:

  • Dãy \(1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là dãy số lẻ đầu tiên.
  • Có đúng \(n\) số hạng.

Tính tổng:

Tổng của \(n\) số lẻ đầu tiên:

\(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right) = n^{2}\)

✅ Tổng của \(n\)

10 tháng 8 2015

không ai giúp mình à ! Buồn wá

10 tháng 1 2020

mình chưa học đến nha sorry

30 tháng 11 2016

b1a c đg bd sai

b2a sai b sai c đg

b3 a 2 b 5

9 tháng 2 2019

Bài 1 là có n số hạng các bạn nhé 

mình quên mất