Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
Giả sử tồn tại n thoả mãn đề bài.
Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.
Do đó \(n^3+2018n⋮4\).
Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).
Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.
Vậy không tồn tại n thoả mãn đề bài.
-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6
Phần bể chưa có nước bằng:
1 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) (thể tích bể)
Bể sẽ đầy sau:
\(\dfrac{3}{4}\) : \(\dfrac{1}{8}\) = 6 (giờ)
Đs...
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5
a + 3 ≤x≤a + 2018 ( a ∈N )
vậy x thuộc (a+3;a+4;a+5;a+6;...;a+2018)
tổng:
a+3+a+4+a+5+a+6+a+7+...+a+2018
=a*2016+3+4+5+6+7+...+2018
=a*2016+(2018+3)*2016:2
-----đến đây cậu làm đc ùi-mik lười lắm ------
Bài 2:
\(1)25-12\cdot2+2^3\\ =25-24+2^3\\ =1+8\\ =9\\ 2)45-12\cdot3+2^3\\ =45-36+2^3\\ =9+8\\ =17\\ 3)32+5\cdot13-3\cdot2^3\\ =32+65-3\cdot8\\ =97-24\\ =73\\ 4)150+50:5-2\cdot3^2\\ =150+10-2\cdot9\\ =160-18\\ =142\\ 5)35-2\cdot1^{111}+3\cdot7^2\\ =35-2\cdot1+3\cdot49\\ =35-2+147\\ =33+147\\ =180\\ 6)2023-5^3:25+27\\ =2023-125:25+27\\ =2023-5+27\\ =2023+22\\ =2045\)
Bài 1:
1: \(3^2\cdot5^3+9^2=9\cdot125+81=1206\)
2: \(55+45:3^2=55+45:9=55+5=60\)
3: \(8^3:4^2-5^2=\dfrac{2^6}{2^4}-25=2^2-25=4-25=-21\)
4: \(5\cdot3^2-32:2^2=5\cdot9-2^3=45-8=37\)
5: \(16:2^3+5^2\cdot4=16:8+25\cdot4=2+100=102\)
6: \(5\cdot2^2-18:3^2=5\cdot4-18:9=20-2=18\)
7: \(3\cdot5^2-15\cdot2^2=3\cdot25-15\cdot4=75-60=15\)
8: \(2^3\cdot6-72:3^2=8\cdot6-72:9=48-8=40\)
9: \(5\cdot2^2-27:3^2=5\cdot4-27:9=20-3=17\)
10: \(3\cdot2^4+81:3^2=3\cdot16+81:9=48+9=57\)
11: \(4\cdot5^3-32:2^5=4\cdot125-32:32=500-1=499\)
12: \(6\cdot5^2-32:2^4\)
\(=6\cdot25-32:16\)
=150-2=148
Bài 3:
1: \(2^8:2^4+3^2\cdot3\)
\(=2^4+3^3\)
=16+27=43
2: \(3^{24}:3^{21}+2^2\cdot2^3\)
\(=3^3+2^5\)
=27+32=59
3: \(5^9:5^7+12\cdot3+7^0\)
\(=5^2+4+1\)
=25+5=30
4: \(5^6:5^4+3^2-2021^0\)
\(=5^2+9-1\)
=25+8=33
5: \(3^{19}:3^{16}+5^2\cdot2^3-1^{2021}\)
\(=3^3+25\cdot8-1\)
=200+26=226
6: \(3^6:3^5+2\cdot2^3+2021^0\)
\(=3+2^4+1\)
=4+16=20