Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu một số phân tích ra thành tích các thừa số nguyên tố:a=pt11.pt22...ptkk
thì số các số là ước của số a sẽ là (p1+1)(p2+1)...(pk+1)
Dựa vào nhận xét này, ta suy ra để số a là nhỏ nhất ta suy ra các thừa số nguyên tố có trong phân tích của số a phải là các thừa số từ nhỏ nhất đến lớn nhất có thể
Nhận xét thứ hai là với số có 16 ước ta có các trường hợp sau:
16=1.16=2.8=4.4=2.2.4=2.2.2.2
Với trường hợp 16 = 1.16 thì khi đó số a có dạng là a=\(2^{15}\)=32768
Với trường hợp 16 = 2.8 thì số a khi đó số a có dạng là a=\(2^7.3^1\)=384
Với trường hợp 16 = 4.4 thì khi đó số a có dạng là a=\(2^3.3^3\)=216
Với trường hợp 16 = 2.2.4 thì khi đó số a có dạng là a=\(2^3.3^2.5^1\)=120
Với trường hợp 16 = 2.2.2.2 thì khi đó số a có dạng là a=\(2^1.3^1.5^1.7^1\)=210
Bằng lập luận toán học ta vẫn có thể suy ra số a là 120
Bài toán trở thành tìm chữ số tận cùng của \(92^{120}\)
Ta dễ dàng có được: \(92^{120}=92^{4.30}=\left(92^4\right)^{30}=\left(....6\right)^{30}=...6\)
Chúc bạn học tốt
1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)
2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.
- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.
- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.
3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.
4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau
5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)
Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)
Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)
Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)
6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.
VD : \(\frac{8}{2}\) = 4
7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)
t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)
\(ad=bc=\frac{b}{a}=\frac{d}{c}\)
\(ad=bc=\frac{b}{d}=\frac{a}{c}\)
\(ad=bc=\frac{d}{b}=\frac{c}{a}\)
T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)
8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn
vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................
9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.
Trục số thực là trục số biểu diễn các số thực
10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a
1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)
2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.
số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương
3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm
4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x
5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)
chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)
luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)
luỹ thừa của 1 tích: \(5.5=5^2\)
luỹ thừa của 1 thương:\(25:5=5^1\)
họn số thứ nhất là số a \(\ne\) 0 và số thứ hai là số 0
như vậy ta có a0 = 1 là số nguyên dương nhỏ nhất
Chọn số thứ nhất là a và số thứ 2 là 0
Ta có:\(a^0=1\)
Vậy 1 là số nguyên dương nhỏ nhất
3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)
2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)
1. 3 cách viết là: -0,6 ; -6/10 ; -9/15 . (Cậu tự biểu diễn nhé !)
2. Số hữu tỉ dương là những số hữu tỉ lớn hơn 0. Số hữu tỉ âm là những số hữu tỉ nhỏ hơn 0. Số 0 không phải là số hữu tỉ dương và cũng không phải là số hữu tỉ âm.
3. Gía trị tuyệt đối của 1 số hữu tỉ x, kí hiệu IxI là khoảng cách từ điểm x đến điểm 0 trên trục số.
4. Lũy thừa bật n của số hữu tỉ x, kí hiệu là x mũ n, là tích của n thừa số x, n là một số tự nhiên lớn hơn 1. Vd: xn = x.x...x (x thuộc Q. n thuộc N. n > 1)
5. Nhân 2 lũy thừa cùng cơ số: xm . xn = xm+n
Chia 2 lũy thừa cùng cơ số khác 0: xm : xn = xm-n (x khác 0. m > hoặc = n)
Lũy thừa của một lũy thừa: (xm)n = xm.n)
Lũy Thừa của một tích: (x.y)n = xn . yn
Lũy thừa của một thương: (x/y)n = xn/yn .
6. Thương của phép chia số hữu tỉ x cho số hữu tỉ y (y khác 0) gọi là tỉ số của hai số x và y, kí hiệu là x/y hay x:y . Vd: tỉ số của 2 số -5,12 và 10,25 được viết là -5,12/10,25 hay -5,12:10,25.
7. Tỉ lệ thức là đẳng thức của 2 tỉ số a/b = c/d hay a:b = c:d . Từ tỉ lệ thức a/b = c/d ta suy ra a/b=c/d=a+b/c+d=a-c/b-d, với b khác +- d . Từ dãy tỉ số bằng nhau a/b=c/d/e/f ta suy ra: a/b = c/d = e/f = a+c+e/b+d+f = a-c+e/b-d+f, với giả thiết các số đều có nghĩa.
8. Các số viết được dưới dạng số thập phân vô hạn không tuần hoàn được gọi là số vô tỉ. Vd: Số\(\) pi = 3,45557532323525970,... 0,54455552244178 là các số vô tỉ.
9. Số hữu tỉ và số vô tỉ gọi chung là số thực.
Mỗi điểm trên trục số đều biểu diễn một số thực. Vì thế trục số còn gọi là trục số thực. Tập hợp các số thực lấp đầy trục số.
10. Căn bậc 2 của một số a không âm là số x sao cho x2 = a .
. Cái này trong sách có mà bạn. Chúc bạn học tốt nha !