Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3200 = (32)100 = 9100
2300 = (23)100 = 8100
Vì: 8100 < 9100
=> 3200 > 2300
a) S=1+52+54+.....+5200
=>52S=25S=52+54+56+.....+5202
=>25S-S=(52+54+56+....+5202)-(1+52+54+......+5200)
=>24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
Ta có: 4^30=2^30.2^30=2^30.4^15
3.24^10=3.(3.2^3)^10=2^30.3^11
Ta thấy: 3^11<3^15<4^15 => 4^15>3^11
Vì 4^15>3^11 nên 2^30.4^15>2^30.3^11
=>2^30+3^30+4^30>3.24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
4^30=2^30*2^30
=2^30*4^15
3*24^10=3*3^10*8^10=3^11*2^30
mà 4^30>3^11
nên 2^30+3^30+4^30>3*24^10
\(S=1+5+5^2+5^4+...+5^{200}\)
\(\Leftrightarrow5^2S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S=5^2+5^4+...+5^{202}\)
\(\Leftrightarrow25S-S=5^{202}-1\)
\(\Leftrightarrow S=\left(5^{202}-1\right)\div24\)
a) S = 1 + 52 + 54 + ... + 5200
=> 52S = 52.(1 + 52 + 54 + ... + 5200)
=> 25S = 52 + 54 + 56 + ... + 5202
=> 25S - S = (52 + 54 + 56 + ... + 5202) - (1 + 52 + 54 + ... + 5200)
=> 24S = 5202 - 1
=> S = \(\frac{5^{202}-1}{24}\)
a, 2^24 > 3^16
b, 5^300>3 ^500
c,99^20 > 9999^10
d, 2^30 +3^44 +4^30 < 3x24^10
a) Ta có: \(2^{300}=\left(2^3\right)^{100}\)
\(=8^{100}\)
Ta có: \(3^{200}=\left(3^2\right)^{100}\)
\(=9^{100}\)
Ta có: \(8^{100}< 9^{100}\)
nên \(2^{300}< 3^{200}\)
b) Ta có: \(4^{30}=2^{30}\cdot2^{30}\)
\(=2^{30}\cdot\left(2^2\right)^{15}\)
\(=2^{30}\cdot4^{15}\)
Ta có: \(3\cdot24^{10}=3\cdot3^{10}\cdot8^{10}\)
\(=3^{11}\cdot8^{10}\)
\(=3^{11}\cdot2^{30}\)
Ta có: \(4^{15}>3^{15}\)
mà \(3^{15}>3^{11}\)
nên \(4^{15}>3^{11}\)
mà \(4^{30}>4^{15}\)
nên \(4^{30}>3^{11}\)
\(\Leftrightarrow2^{30}+3^{30}+4^{30}>3^{11}+3^{30}+2^{30}\)
hay \(2^{30}+3^{30}+4^{30}>3\cdot24^{10}\)