Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow2x=46\)
\(\Leftrightarrow x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=7\cdot9\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-8\end{array}\right.\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Leftrightarrow\left(x+4\right)^2=5\cdot20\)
\(\Leftrightarrow\left(x+4\right)^2=100\)
\(\Leftrightarrow x+4=10\)
\(\Leftrightarrow x=6\)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\) điều kiện x khác -5
<=> 7(x-3)=5(x+5)
<=> 7x-5x=25+21
<=> x=23
vậy x=23
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)điều kiện x khác 1
<=> 63=x2-1<=> x=\(\pm\)8
vậy x={-8;8}
c) \(\frac{x+4}{20}=\frac{5}{x+4}\) điều kiện x khác -4
<=> (x+4)2=25
<=> \(\left[\begin{array}{nghiempt}x+4=5\\x+4=-5\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=1\\x=-9\end{array}\right.\)
vậy x ={1;-9}
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt