Bài tập 1: Cho hàm số y = f(x) = 3/2 * x ^ 2 1) Hãy tính f(- 2) f(3) f(sqrt(5))...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2023

loading...

a: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)

F(3)=3/2*3^2=27/2

\(F\left(\sqrt{5}\right)=\dfrac{3}{2}\cdot\left(\sqrt{5}\right)^2=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\)

\(F\left(-\dfrac{\sqrt{2}}{3}\right)=\dfrac{3}{2}\cdot\dfrac{2}{9}=\dfrac{3}{9}=\dfrac{1}{3}\)

b: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)

=>A thuộc (P)

\(F\left(-\sqrt{2}\right)=\dfrac{3}{2}\cdot\left(-\sqrt{2}\right)^2=\dfrac{3}{2}\cdot2=3\)

=>B thuộc (P)

\(F\left(-4\right)=\dfrac{3}{2}\cdot\left(-4\right)^2=\dfrac{3}{2}\cdot16=\dfrac{48}{2}=24\)

=>C ko thuộc (P)

F(1/căn 2)=3/2*1/2=3/4

=>D thuộc (P)

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

4 tháng 4 2017

a) Vẽ đồ thị hàm số y = x2.

b) Ta có y = f(x) = x2 nên

f(-8) = (-8)2 = 64; f(-1,3) = (-1,3)2 = 1,69; f(-0,75) = (-0,75)2 = 0,5625; f(1,5) = 1,52 = 2,25.

c) Theo đồ thị ta có:

(0,5)2 ≈ 0,25

(-1,5)2 ≈ 2,25

(2,5)2 ≈ 6,25

d) Theo đồ thị ta có: Điểm trên trục hoành √3 thì có tung độ là y = (√3)2 = 3. Suy ra điểm biểu diễn √3 trên trục hoành bằng 1,7. Tương tự điểm biểu diễn √7 gồm bằng 2,7.



23 tháng 11 2015

\(f\left(-3\right)=\left(-3\right)^5a+\left(-3\right)^3b+\left(-3\right)c-5=208\)

\(\Rightarrow-\left(3^5a+3^3b+3c\right)=208+5=213\)

\(f\left(3\right)=3^5a+3^3b+3c=-2013\)

2/ bình phương 2 lần

23 tháng 11 2015

........................

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Vì $2>0$ nên $f(x)=2x-1$ là hàm đồng biến trên $R$
$\sqrt{3}-2-(\sqrt{5}-3)=1+\sqrt{3}-\sqrt{5}=1-\frac{2}{\sqrt{3}+\sqrt{5}}> 1-\frac{2}{1+1}=0$

$\Rightarrow \sqrt{3}-2> \sqrt{5}-3$

Vì hàm đồng biến nên $f(\sqrt{3}-2)> f(\sqrt{5}-3)$

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

DD
12 tháng 7 2021

Điều kiện xác định: \(x\ge0\).

Lấy \(x_1>x_2\ge0\).

\(f\left(x_1\right)-f\left(x_2\right)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0\)

Do đó hàm số đồng biến. 

Lần lượt thế tọa độ các điểm vào hàm số ban đầu, ta thấy điểm \(C\left(9,3\right)\)thỏa mãn nên nó thuộc đồ thị của hàm số đã cho, các điểm khác không thuộc.