Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(a^2+b+2=2ab\)
\(\Leftrightarrow a^2+2=b\left(2a-1\right)\)
\(\Leftrightarrow b=\frac{a^2+2}{2a-1}\in Z\)
khi và chỉ khi \(a^2+2⋮2a-1\)
\(\Leftrightarrow2\left(a^2+2\right)-a\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow a+4⋮2a-1\)
\(\Leftrightarrow2\left(a+4\right)-\left(2a-1\right)⋮2a-1\)
\(\Leftrightarrow9⋮2a-1\)
\(\Leftrightarrow2a-1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Rồi giải a..........
Rồi giải b...........
Bước tiếp theo bn giải nha
Bài 8: x = 180o - 50o - 45o = 85o
Bài 9: (Bạn ghi rõ đề rồi mik giải nha)
\(\frac{1}{4}\) và \(\frac{1}{2}\)
Vì 0x = 0 (Với mọi \(x\in R\)); 12x = 1 (Với mọi \(x\in Z\)).
để\(\frac{2x-1}{3+x}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\3+x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\3+x< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x< \frac{1}{2}\\x>-3\end{cases}\left(ktm\right)}\\\hept{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}\left(tm\right)}\end{cases}}\)
Vậy -3<x<1/2
\(=3^4.\left(3^3\right)^4+3^2.\left(3^4\right)^3=3^{16}+3^2.\left(3^4\right)^3=\left(3^4\right)^4+3^2.\left(3^4\right)^3\)
\(3^4\) có tận cùng là 1 \(\Rightarrow\left(3^4\right)^4\) có tận cùng là 1
\(3^4\)có tận cùng là 1 \(\Rightarrow\left(3^4\right)^3\) có tận cùng là 1 \(\Rightarrow3^2.\left(3^4\right)^3\) có tận cùng là 9
=> Biểu thức có tận cùng là 0
Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)
Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)
Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)
Vậy với mọi a thì \(\left|a\right|+a⋮2\)
Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)
\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)
Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)
Vậy không có x,y,z thỏa mãn
Đặt vế trái phương trình là A
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\)
\(3A=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{\left(x+3\right)-x}{x\left(x+3\right)}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}=\frac{x+2}{x+3}\Rightarrow A=\frac{x+2}{3\left(x+3\right)}\)
\(\Rightarrow\frac{x+2}{3\left(x+3\right)}=\frac{667}{2002}\Rightarrow2002\left(x+2\right)=3.667.\left(x+3\right)\)
\(\Leftrightarrow2002x+4004=2001x+6003\Leftrightarrow x=1999\)