K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

Với \(n\in N;n>0\) có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào P có:
\(P=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2016}}-\dfrac{1}{\sqrt{2017}}\)

\(=1-\dfrac{1}{\sqrt{2017}}\)

\(\Rightarrow a^2+b=1^2+2017=2018\)

Ý A

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

NV
10 tháng 4 2022

 

Giả sử \(x_1< x_2\)

Gọi A, B là 2 điểm biểu diễn \(x_1;x_2\) trên \(Ox\Rightarrow A\left(x_1;0\right)\) ; \(B\left(x_2;0\right)\)

\(OA=\left|x_1\right|;OB=\left|x_2\right|\)

\(\Rightarrow AB=\left|x_2-x_1\right|\)

Trong tam giác vuông OAN: \(OA^2+ON^2=AN^2\Rightarrow AN^2=x_1^2+b^2\)

Trong tam giác vuông OBN: \(OB^2+ON^2=BN^2\Rightarrow BN^2=x_2^2+b^2\)

Do tam giác ABN vuông tại N:

\(\Rightarrow AN^2+BN^2=AB^2\)

\(\Rightarrow x_1^2+x_2^2+2b^2=\left(x_2-x_1\right)^2\)

\(\Rightarrow2b^2=-2x_1x_2\Rightarrow b^2=-x_1x_2\)

\(\Rightarrow b^2=1011\Rightarrow b=\sqrt{1011}\)

10 tháng 4 2022

Con cảm ơn thầy nhiều ạ

9 tháng 4 2022

Gọi phương trình đường thẳng đi qua 2 điểm \(A,B\) là \(y=mx+n\)

Do \(\left\{{}\begin{matrix}A\in AB\\B\in AB\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)

\(\Rightarrow AB:y=-2x+1\)

Do \(C\left(a,b\right)\in\left(d\right):y=2x-3\Rightarrow b=2a-3\)   (1)

Mặt khác, để \(A,B,C\) thẳng hàng thì \(C\in AB\Rightarrow b=-2a+1\)   (2)

Từ (1) và (2) ta có \(a=1,b=-1\) nên \(a+b=0\)

 

NV
9 tháng 4 2022

Do C thuộc d nên: \(b=2a-3\) \(\Rightarrow C\left(a;2a-3\right)\)

Gọi phương trình đường thẳng d1 qua 2 điểm A; B có dạng:

\(y=mx+n\)

A; B thuộc d1 nên: \(\left\{{}\begin{matrix}3=-m+n\\-3=2m+n\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n=1\end{matrix}\right.\)

\(\Rightarrow\) Phương trình d1: \(y=-2x+1\)

A;B;C thẳng hàng khi và chỉ khi C thuộc d1

\(\Rightarrow2a-3=-2a+1\)

\(\Rightarrow4a=4\Rightarrow a=1\Rightarrow b=-1\)

\(\Rightarrow a+b=0\)

26 tháng 8 2021

\(M=\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\left(đk:x\ge0,x\ne9\right)\)

Để \(M=\dfrac{\sqrt{x}+3}{\sqrt{x}-3}< 0\) thì 

\(\sqrt{x}-3< 0\) ( do \(\sqrt{x}+3\ge3>0\))

\(\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\)

Mà \(x\in Z\)

\(\Rightarrow x\in\left\{0;1;2;3;4;5;6;7;8\right\}\)

5 tháng 12 2021

bài nào? =))

5 tháng 12 2021

?

 

26 tháng 2 2023

câu 2 thì mk có pt nhưng mk ko bt giải

\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{10}\\x-y=15\end{matrix}\right.\)

26 tháng 2 2023

Giải câu 2 à bạn, câu 1 tự làm đc rồi :>>

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

5 tháng 9 2021

bài đâu

6 tháng 9 2021

\(\orbr{\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}]}\div\orbr{\begin{cases}\\\end{cases}(2\sqrt{x}-1)(\frac{1}{1-\sqrt{x}}+\frac{\sqrt{x}}{1-\sqrt{x}+x})]}\)

sori mng em bị lag xíu

26 tháng 9 2021

undefined

Còn nửa phần dưới mình quên đăng ạ

26 tháng 9 2021

a) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)

b) \(=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

c) \(=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)

d) \(=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)

e) \(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)

f) \(=\sqrt{\left(3+\sqrt{7}\right)^2}=3+\sqrt{7}\)

l) \(=\sqrt{\left(\sqrt{2}-\dfrac{1}{2}\right)^2}=\sqrt{2}-\dfrac{1}{2}\)

m) \(=\sqrt{\left(2\sqrt{2}+\dfrac{1}{4}\right)^2}=2\sqrt{2}+\dfrac{1}{4}\)