Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
1) \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
2) \(x-3=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
3) \(a+b=a-\left(-b\right)=\left(\sqrt{a}-\sqrt{-b}\right)\left(\sqrt{a}+\sqrt{-b}\right)\)
p/s: chúc bạn học tốt
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)
\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)
Do đó:
\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)
Bài 1:
a) Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}\right)^2-1^2\)
\(=x-1\)
b) Ta có: \(\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}\right)^3+1^3\)
\(=x\sqrt{x}+1\)
c) Ta có: \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
\(=2x-2\sqrt{x}+\sqrt{x}-1\)
\(=2x-\sqrt{x}-1\)
Bài 2: Tìm x
a) Ta có: \(\sqrt{9x^2+6x+1}=3x-2\)
\(\Leftrightarrow\left|3x+1\right|=3x-2\)(*)
Trường hợp 1: \(x\ge\frac{-1}{3}\)
(*)\(\Leftrightarrow3x+1=3x-2\)
\(\Leftrightarrow3x+1-3x+2=0\)
\(\Leftrightarrow3=0\)(vô lý)
Trường hợp 2: \(x< \frac{-1}{3}\)
(*)\(\Leftrightarrow-3x-1=3x-2\)
\(\Leftrightarrow-3x-1-3x+2=0\)
\(\Leftrightarrow-6x+1=0\)
\(\Leftrightarrow-6x=-1\)
hay \(x=\frac{1}{6}\)(loại)
Vậy: \(S=\varnothing\)
b)Trường hợp 1: \(x\ge0\)
Ta có: \(\sqrt{x}-2>0\)
\(\Leftrightarrow\sqrt{x}>2\)
hay x>4(nhận)
Vậy: S={x|x>4}
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
a)
Từ phương trình (2) ⇔ x = √2 - y√3 (3)
Thế (3) vào (1): ( √2 - y√3)√2 - y√3 = 1
⇔ √3y(√2 + 1) = 1 ⇔ y = =
Từ đó x = √2 - . √3 = 1.
Vậy có nghiệm (x; y) = (1; )
b)
Từ phương trình (2) ⇔ y = 1 - √10 - x√2 (3)
Thế (3) vào (1): x - 2√2(1 - √10 - x√2) = √5
⇔ 5x = 2√2 - 3√5 ⇔ x =
Từ đó y = 1 - √10 - . √2 =
Vậy hệ có nghiệm (x; y) = ;
c)
Từ phương trình (2) ⇔ x = 1 - (√2 + 1)y (3)
Thế (3) vào (1): (√2 - 1)[1 - (√2 + 1)y] - y = √2 ⇔ -2y = 1 ⇔ y = -
Từ đó x = 1 - (√2 + 1)(-) =
Vậy hệ có nghiệm (x; y) = (; -)
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)
\(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)
<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)
<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:
\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)
--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)