Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 66661111 = ....6
11111111 = ....1
665555 = ...6
=> Chữ số hàng đơn vị của A là :
A = 66661111 + 11111111 + 665555 = ....6 + ....1 + ....6 = ....3
\(A=6666^{1111}+1111^{1111}+66^{5555}\)
\(6666^{1111}\)có tận cùng là 6
\(1111^{1111}\)có tận cùng là 1
\(66^{5555}\)có tận cùng là 6
\(\Rightarrow6666^{1111}+1111^{1111}+66^{5555}\)có tận cùng là 3
\(\Rightarrow A=6666^{1111}+1111^{1111}+66^{5555}\)có chữ số hàng đơn vị là 3
Chúc bạn học tốt!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
Ta có: \(\frac{1111.c-99.d}{9999.c-11.d}=\frac{11.\left(101.c-9.d\right)}{11.\left(909.c-d\right)}=\frac{101.c-9.d}{909.c-d}=\frac{101.dk-9.d}{909.dk-d}=\frac{d.\left(101k-9\right)}{d.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(1\right)\)
\(\frac{1111.a-99.b}{9999.a-11.b}=\frac{11.\left(101a-9b\right)}{11.\left(909a-b\right)}=\frac{101a-9b}{909a-b}=\frac{101.bk-9b}{909.bk-b}=\frac{b.\left(101k-9\right)}{b.\left(909k-1\right)}=\frac{101k-9}{909k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{1111.c-99.d}{9999.c-11.d}=\frac{1111.a-99.b}{9999.a-11.b}\left(đpcm\right)\)
Đặt \(k=\frac{a}{b}=\frac{c}{d}\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{1111c-99d}{9999c-11d}=\frac{1111kd-99d}{9999kd-11d}=\frac{d\left(1111k-99\right)}{d\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(1\right)\)
\(\frac{1111a-99b}{9999a-11b}=\frac{1111kb-99b}{9999kb-11b}=\frac{b\left(1111k-99\right)}{b\left(9999k-11\right)}=\frac{1111k-99}{9999k-11}\left(2\right)\)
Từ (1) và (2) => \(\frac{1111c-99d}{9999c-11d}=\frac{1111a-99b}{9999a-11b}\)
\(\frac{3}{4}x-14\frac{2}{3}:\left(\frac{11}{15}+\frac{1111}{3535}+\frac{111111}{636363}\right)=12\)
\(\frac{3}{4}x-14\frac{2}{3}:\left(\frac{11}{15}+\frac{1111}{3535}+\frac{111111}{636363}\right)=12\)
\(\frac{3}{4}x-\frac{44}{3}:\left(\frac{11}{15}+\frac{11}{35}+\frac{11}{63}\right)=12\)
\(\frac{3}{4}x-\frac{44}{3}:\frac{11}{9}=12\)
\(\frac{3}{4}x-12=12\)
\(\frac{3}{4}x=12+12\)
\(\frac{3}{4}x=24\)
\(x=24:\frac{3}{4}\)
\(x=32\)
vậy \(x=32\)
Nghĩ cái này nó cũng tựa tựa như vậy,ko biết có dùng được không:V
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(\dfrac{P}{3^{1111}}=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{3^{1111}\left(-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}\right)}\)
\(\dfrac{-P}{3^{1111}}=\dfrac{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}=1\)
\(-P=1.3^{1111}=3^{1111}\Leftrightarrow P=-3^{1111}\)
\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)
\(P=\dfrac{3^{1111}\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}{-1\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}\)
\(P=\dfrac{3^{1111}}{-1}=-3^{1111}\)
biết 1 cách :V thánh nào làm nốt cách kia đi ạ :V