Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)
Trong 1h người 1 làm được 1/x công việc
Trong 1h người 2 làm được 1/y công việc
Trong 1h 2 người làm chung được 1/16 công việc
Ta có pt1: 1/x + 1/y = 1/16
Trong 3h người 1 làm được 3/x công việc
Trong 6h người 2 làm được 6/y công việc
Ta có pt2: 3/x + 6/y =1/4
DONE
Hệ bạn tự giải nha
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
Gọi thời gian làm riêng của người thứ nhất và thứ hai lần lượt là x,y
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{5}{4}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{y}=\dfrac{67}{60}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)
=>Đề sai rồi bạn
Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).
2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày
\(\Rightarrow15\times y+15\times y=1\left(1\right)\)
Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)
\(\Rightarrow3\times x+5\times y=\frac{1}{4}\)
\(\Rightarrow5\times\left(3\times x+5\times y\right)=5\times\frac{1}{4}\)
\(15\times x+25\times y=\frac{5}{4}\left(2\right)\)
Lấy (2) trừ đi (1) ta được:
\(\left(15\times x+25\times y\right)-\left(15\times x+15\times y\right)=\frac{5}{4}-1\)
\(10\times y=\frac{1}{4}\)
\(y=\frac{1}{4}:10\)
\(\Rightarrow y=\frac{1}{40}\)
\(\Rightarrow x=\frac{1}{24}\)
Vậy .................
Chúc bạn học tốt
Gọi thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là x,y
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{40}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{1}{8}\\\dfrac{5}{x}+\dfrac{6}{y}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-1}{y}=\dfrac{-1}{120}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{40}\end{matrix}\right.\)
=>y=120; x=60
Tham khảo:
Gọi số giờ làm riêng của người công nhân thứ I là: x (giờ) (x > 40)
Gọi số giờ làm riêng của người công nhân thứ II là: y (giờ) (y > 40)
+) Một giờ người thứ I làm được: 1/x (công việc)
Một giờ người thứ II làm được: 1/y(công việc)
Trong một giờ cả 2 người làm được: 140 (công việc)
Ta có phương trình: 1/x+ 1/y= 140(1)
+) Người thứ nhất làm trong 5h: 5/x (công việc)
Người thứ nhất làm trong 6h: 6/y (công việc)
Cả 2 người làm được: 2/15(công việc)
Ta có phương trình: 5/x+ 6/y = 2/15(2)
Từ (1)(1) và (2)(2), ta có hệ phương trình:
{1/x+1/y=1/40
5/x+6/y=215
{x=60
y=120
Vậy nếu làm riêng thì người : Thứ I mất 60 giờ để hoàn thành công việc.
Thứ II mất 120 giờ để hoàn thành công việc.
Gọi \(x\left(giờ\right),y\left(giờ\right)\) lần lượt là thời gian của đội thứ nhất và đội thứ hai làm riêng xong công việc (x, y > 0)
Trong một giờ hai đội làm được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\) (công việc)
Đội thứ nhất làm trong 3 giờ rồi đội thứ hai làm tiếp trong 4 giờ được 0,8 công việc nên ta có:
\(\dfrac{3}{x}+\dfrac{4}{y}=0,8\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{4}{y}=0,8\end{matrix}\right.\)
Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\), ta có:
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{4}\\3u+4v=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\3u+4v=0,8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4.\dfrac{1}{5}+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\dfrac{1}{20}\\u=\dfrac{1}{5}\end{matrix}\right.\)
*) \(u=\dfrac{1}{5}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{5}\Leftrightarrow x=5\) (nhận)
*) \(v=\dfrac{1}{20}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{20}\Rightarrow y=20\) (nhận)
Vậy đội thứ nhất làm riêng trong 5 giờ xong công việc
đội thứ hai làm riêng trong 20 giờ xong công việc
Trả lời:
gọi x và y lần lượt là số phần công việc người thứ nhất và người thứ hai làm được trong 1 giờ,
Theo đề bài ta có:
18(x+y)=1 (hai người cùng làm thì xong việc trong 18h)
và 6x+12y= 1/2 (người thứ nhất làm 6 giờ, người thứ hai làm 12 giờ thìchỉ hoàn thành được 50% công việc)
Tử hai phương trình trên=> x=y=1/36.
Vậy nếu làm một mình, mỗi người sẽ hoàn thành công việc trong 36 giờ
TK:
1.
Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).
2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày
⇒
15
×
y
+
15
×
y
=
1
(
1
)
Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)
⇒
3
×
x
+
5
×
y
=
1
4
⇒
5
×
(
3
×
x
+
5
×
y
)
=
5
×
1
4
15
×
x
+
25
×
y
=
5
4
(
2
)
Lấy (2) trừ đi (1) ta được:
(
15
×
x
+
25
×
y
)
−
(
15
×
x
+
15
×
y
)
=
5
4
−
1
10
×
y
=
1
4
y
=
1
4
:
10
⇒
y
=
1
40
⇒
x
=
1
24
Vậy .................
Tham Khảo:
1.
Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).
2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày
⇒15×y+15×y=1(1)⇒15×y+15×y=1(1)
Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)
⇒3×x+5×y=14⇒3×x+5×y=14
⇒5×(3×x+5×y)=5×14⇒5×(3×x+5×y)=5×14
15×x+25×y=54(2)15×x+25×y=54(2)
Lấy (2) trừ đi (1) ta được:
(15×x+25×y)−(15×x+15×y)=54−1(15×x+25×y)−(15×x+15×y)=54−1
10×y=1410×y=14
y=14:10y=14:10
⇒y=140⇒y=140
⇒x=124⇒x=124
Vậy .................
Gọi thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là x(giờ) và y(giờ)
(ĐK: x>0; y>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\left(côngviệc\right)\)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\left(côngviệc\right)\)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{6}\left(côngviệc\right)\)
Do đó, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\)
Trong 3 giờ, người thứ nhất làm được \(\dfrac{3}{x}\)(công việc)
Trong 1,5 giờ, người thứ hai làm được \(\dfrac{1.5}{y}\left(côngviệc\right)\)
Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 1,5 giờ thì hai người làm được 40% công việc nên ta có:
\(\dfrac{3}{x}+\dfrac{1.5}{y}=\dfrac{2}{5}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{3}{x}+\dfrac{1.5}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{2}\\\dfrac{3}{x}+\dfrac{1.5}{y}=\dfrac{2}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1.5}{y}=\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{1}{10}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{3}{30}=\dfrac{1}{10}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\left(nhận\right)\)
Vậy: thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình lần lượt là 10(giờ) và 15(giờ)