Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+........+\(\frac{1}{x.\left(x+3\right)}\)=\(\frac{101}{1540}\)
3(.\(\frac{1}{5.8}+\frac{1}{8.11}\)+\(\frac{1}{11.14}+.......+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}.3=\frac{303}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+....+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=>\(x+3=308\)
\(x=308-3=305\)
Vậy \(x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{308}\)
=> x + 3 = 308
x = 308 - 5
x = 303
kí hiệu /:phần,kí hiệu'."nhân
a)5/4-5/8+-2/3=30/24+15/24+(-16/24)=29/24
b)7/19.8/11+7/19.3/11+12/19
=7/19.(8/11+3/11)+12/19
=7/19.11/11+12/19
=7/19.1+12/19
=7/19+2/19=9/19
chúc học tốt!
Đặt: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)
\(=\frac{1}{2}.\frac{2012}{2013}\)
\(=\frac{1006}{2013}\)
=\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+...........+\(\frac{1}{68}\)-\(\frac{1}{71}\)
=\(\frac{1}{11}\)-\(\frac{1}{71}\)=\(\frac{60}{781}\)
kết quả nè bạn
\(=\frac{3}{3}\left(\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\right)\))
\(=\frac{3}{3}\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\right)\)
\(=\frac{3}{3}\left(\frac{1}{11}-\frac{1}{71}\right)\)
Rồi tiếp theo bạn tìm UCLN của 11 và 71 rồi lấy 3 phần 3 nhân cho kết quả trong ngoặc nhé
4/5 . 5/8 + 1/8 . 4/5 - 4/5 . -1/4
= 4/5.( 5/8 + 1/8 -(-1/4)
= 4/5. 1
= 4/5
Hok tốt &_&
\(\frac{4}{5}\)X \(\frac{5}{8}\)+\(\frac{1}{8}\)X\(\frac{4}{5}\)-\(\frac{4}{5}\)X\(\frac{-1}{4}\)
=4/5x(5/8+1/8-(-1/4)=4/5x5/4=1
Đặt A=\(\frac{1}{3}.5+\frac{1}{5}.7+...+\frac{1}{97}.99\)
=>A=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
=>2A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
=>2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=>2A=\(\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
=>A=\(\frac{32}{99}:2=\frac{32}{99}.\frac{1}{2}=\frac{32}{198}=\frac{16}{99}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{n.\left(n+3\right)}\)=\(\frac{1}{3}\)(\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{n}+\frac{1}{n+3}\))=\(\frac{1}{5}-\frac{1}{n+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
=>\(\frac{1}{n+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)vậy n= 308+3=311