Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
DO đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó:ADHE là hình chữ nhật
Suy ra: AH=DE
mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)
nên DE=8cm
a: góc AIH=góc AKH=góc KAI=90 độ
=>AIHK là hcn
b: AIHK là hcn
=>góc AIK=góc AHK=góc C
=>ΔAIK đồng dạng với ΔACB
a: BC=10cm
Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC đồng dạng với ΔHBA
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
=>\(BA^2=BH\cdot BC\)
b:ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=400\)
=>\(BC=\sqrt{400}=20\left(cm\right)\)
\(BA^2=BH\cdot BC\)
=>\(BH=\dfrac{12^2}{20}=7,2\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+7,2^2=12^2\)
=>\(HA^2=12^2-7,2^2=9,6^2\)
=>HA=9,6(cm)
c: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{CD}=\dfrac{BA}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)
=>\(S_{ABD}=\dfrac{3}{5}\cdot S_{BCD}\)
a, đồng dạng trường hợp góc - góc
b, Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền nên ta có :
AM = BM = CM = BC/2 = (BH + CH )/ 2 = 13/2 = 6,5 ( cm )
ta có : HM = BM - BH = 6,5 - 4 = 2,5 ( cm )
áp dụng định lí Pytago cho tam giác vuông AHM ta có : \(AH^2=AM^2-HM^2\Rightarrow AH=\sqrt{AM^2-HM^2}=\sqrt{6,5^2-2,5^2}=6.\) (cm )
\(S_{AMH}=\frac{AH.HM}{2}=\frac{6.2,5}{2}=7,5\left(cm^2\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
b: XétΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot CH\)
c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)
nên AH=8cm
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE=8(cm)
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^BHA = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAC )
Vậy tam giác ABH~ tam giác CAH (g.g )
=> AH/CH=BH/AH => AH^2 = CH.BH
c, Ta có : AH = 2 . 4 = 8 cm
Xét tứ giác ADHE có :
^A = ^ADH = ^AEH = 900
Vậy tứ giác ADHE là hcn
=> AH = DE = 8 cm
d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)
Xét tam giác AHC và tam giác ABC
^AHC = ^BAC = 900
^HAC = ^B ( cùng phụ ^BAM )
Vậy tam giác AHC ~ tam giác BAC ( g.g)
=> AC / BC = HC/AC => AC^2 = HC ( HB + HC )
=> AC = 4 . 5 = 20 cm
Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)