K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A vàΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE
b: Ta có: DA=DE

mà DE<DC

nên DA<DC

c: Xét ΔAMD vuông tại A và ΔECD vuông tại E có

DA=DE

\(\widehat{ADM}=\widehat{EDC}\)

Do đó: ΔAMD=ΔECD

Suy ra: AM=EC; DM=DC

Ta có: BA+AM=BM

BE+EC=BC

mà BA=BE

và AM=EC

nên BM=BC

mà DM=DC

nên BD là đường trung trực của MC

a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

25 tháng 4 2022

Bạn nào biết làm giúp mình với !!!(kiêm luôn vẽ hình)

17 tháng 5 2018

15 tháng 8 2023

A B C D E F H

a/

Xét tf vuông ABD và tg vuông EBD có

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE

b/

Gọi H là giao của BD và AE

Xét tg ABH và tg EBH có

tg ABD = tg EBD (cmt) => AB=EB

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BH chung

=> tg ABH = tg EBH (c.g.c) => HA=HE (1)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => BD là đường trung trực của AE

c/

Gọi F' là giao của AB và DE

Xét tg vuông F'EB và tg vuông ABC có

\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )

AB=EB (cmt)

=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> BF=BC

Xét tg F'BD và tg CBD có

BF'=BC

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg F'BD = tg CBD (c.g.c) => DF' = DC

Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng

d/

Xét tg BCF có

\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF

\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)