K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

A B C K M I P H

a, xét tứ giác  MPHI có : ^MPH = ^PHI = ^MIH = 90

=> MPHI là hình chữ nhật (dh)

b, MPHI là hình chữ nhật (Câu a)

=> MI = PH (tc)                               (1)

MP _|_ BH (gt); BH _|_ AC (Gt)

=> MP // AC (đl)

=> ^ACB = ^PMB (đồng vị)

^ACB = ^ABC do tam giác ABC cân tại A (gt)

=> ^PMB = ^ABC 

xét tam giác BKM và tam giác MPB có : BM chung

^BKM = ^MPB = 90

=> tam giác BKM = tam giác MPB (ch-gn)

=> KM = BP

BP + PH = BH

và (1)

=> MK + MI = BH

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
30 tháng 4 2017

Bạn viết đầu bài đầy đủ hơn nhé!

30 tháng 4 2017

Xin lỗi mình viết nhầm!

17 tháng 8 2016

a) Ta có : \(5^2=3^2+4^2\) hay \(BC^2=AB^2+AC^2\)

áp dụng đ/l Pytago đảo ta có ABC là tam giác vuông tại A

b) \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)

\(BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\) 

\(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\) 

Dễ dàng cm được HDAE là hình chữ nhật

=> HD // AC , HE // AB

Áp dụng đl Ta let : \(\frac{HD}{AC}=\frac{HB}{BC}\Rightarrow HD=\frac{AC.BH}{BC}=\frac{\frac{4.9}{5}}{5}=\frac{36}{5}\)

\(HE=\sqrt{AH^2-HD^2}=\frac{48}{25}\)