Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che
Bài 2:
a: \(3B=3+3^2+3^3+...+3^{90}\)
\(\Leftrightarrow2B=3^{90}-1\)
hay \(B=\dfrac{3^{90}-1}{2}\)
b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)
2008 đồng dư với 1(mod 3)
\(\Rightarrow\)2008b2 đồng dư với 1(mod 3)
mà 2007b2 chia hết cho 3
\(\Rightarrow\)a+(2007b2+1)=a+2008b2
\(\Rightarrow\)a+1+2007b2 chia hết cho 3
vì a+1 chia hết cho 3(gt)
2007b2 chia hết cho 3 (2007 chia hết cho 3)
\(\Rightarrow\)a+2008b2 chia hết cho 3
Ta có A = \(1+5+5^2+...+5^{2015}\)
=> 5A = \(5+5^2+5^3+...+5^{2016}\)
=> 5A - A = \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)
=> 4A = \(5^{2016}-1\)
=> A = \(\left(5^{2016}-1\right):4\)
=> A chia hết cho 31
A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25
A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25
A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25
A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25
A = 25 . ( 41994 - 1 ) + 25
A = 25 . ( 41994 - 1 + 1 )
A = 25 . 41994
A = 25 . 4 . 41993
A = 100 . 41993 \(⋮\)100
2.
a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2
Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3
b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4
Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 )
= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )
= 5b + 10
= 5 . ( b + 2 ) \(⋮\)5
3.
Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên
\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²)+...+(259+260)A=(2+2²)+...+(259+260)
⇔ A=2.(1+2)+...+259.(1+2)A=2.(1+2)+...+259.(1+2)
⇔ A=2.3+...+259.3A=2.3+...+259.3
⇔ A=3.(2+..+259)A=3.(2+..+259)
⇒ A⋮ 3
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²+2³)+...+(258+259260)A=(2+2²+2³)+...+(258+259260)
⇔ A=2.(1+2+2²)+...+258.(1+2+2²)A=2.(1+2+2²)+...+258.(1+2+2²)
⇔ A=2.7+...+258.7A=2.7+...+258.7
⇔ A=7.(2+...+258A=7.(2+...+258
⇒ A⋮ 7
Hiện tại mình chưa tìm ra sao chia hết cho 5 nên bạn tự làm nhé cảm ơn bạn