Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
1) Để đa thức f(x) có nghiệm thì:
\(x^3+2x^2+ax+1=0\)
\(f\left(-2\right)=\left(-2\right)^3+2\left(-2\right)^2+a\left(-2\right)+1=0\)
\(\Rightarrow-8+8-2a+1=0\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Vậy a = \(\dfrac{1}{2}\).
2) Để đa thức f(x) có nghiệm thì:
\(x^2+ax+b=0\)
\(f\left(1\right)=1^2+a.1+b=0\Rightarrow a+b+1=0\)(1)
\(f\left(2\right)=2^2+a.2+b=0\Rightarrow2a+b+4=0\)
\(f\left(2\right)-f\left(1\right)=\left(2a+b+4\right)-\left(a+b+1\right)=0\)
\(\Rightarrow2a+b+4-a-b-1=0\)
\(\Rightarrow a+3=0\Rightarrow a=-3\)
Thay vào (1) ta có: -3 + b + 1 =0
\(\Rightarrow\) b - 2 = 0 \(\Rightarrow\) b = 2
Vậy a = -3; b = 2.
1) Ta có: x = -2 là nghiệm của f(x)
\(\Rightarrow f\left(-2\right)=\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=0\)
\(\Rightarrow f\left(-2\right)=-8+8-2a+1=0\)
\(\Rightarrow-2a+1=0\)
\(\Rightarrow-2a=-1\)
\(\Rightarrow a=0,5\)
2) Ta có: x = 1 là nghiệm của f (x)
\(\Rightarrow f\left(1\right)=1^2+a.1+b=0\)
\(\Rightarrow1+a+b=0\)
Ta có: x = 2 là một nghiệm của f (x)
\(\Rightarrow f\left(2\right)=2^2+a.2+b=0\)
\(\Rightarrow4+2a+b=0\)
\(\Rightarrow1+a+b=4+2a+b\)
\(\Rightarrow1+a+b-4-2a-b=0\)
\(\Rightarrow-3-a=0\Rightarrow a=-3\)
\(\Rightarrow1-3+b=0\Rightarrow b=2\)
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Câu a :
Đa thức \(A\left(x\right)=x^2+ax+b\) có 2 nghiệm \(x=2\) , \(x=3\)
\(\Leftrightarrow A\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}4+2a+b=0\\9+3a+b=0\end{matrix}\right.\)
Từ hệ trên ta giải được : \(\left\{{}\begin{matrix}a=-5\\b=6\end{matrix}\right.\)
lê thị hương giang, Mashiro Shiina, Aki Tsuki, DƯƠNG PHAN KHÁNH DƯƠNG, Nguyễn Hải Dương
pls help me this question
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
Ta có \(f\left(x\right)\)có nghiệm là -1
=> \(f\left(-1\right)=0\)
=> \(\left(-1\right)^3+\left(-1\right)^3a+\left(-1\right)b-2=0\)
=> \(-1-a-b-2=0\)
=> \(-3-a-b=0\)
=> \(-a-b=3\)
=> \(-\left(a-b\right)=3\)
=> \(a-b=-3\)
=> \(a=-3+b\)(1)
và f (x) cũng có nghiệm là 1
=> \(f\left(1\right)=0\)
=> \(1^3+a.1^3+b-2=0\)
=> \(1+a+b-2=0\)
=> \(-1+a+b=0\)
=> \(a+b=1\)(2)
Thế (1) vào (2), ta có:
\(-3+b+b=1\)
=> \(-3+2b=1\)
=> \(2b=1+3\)
=> \(2b=4\)
=> \(b=2\)
=> \(a=-3+2=-1\)
Bạn giải luôn hộ mik bài này vs đc ko ạ?
Bài 1: Chứng minh rằng các đa thức sau vô nghiệm:
a, \(x^2+1\)
b, \(x^2+\left|x\right|+1\)