K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

\(\text{bạn tự thử từ n=2 đến n=5}\)

\(+,n>5\text{ n có 1 trong các dạng:}5k+1;5k+2;5k+3;5k+4\left(k\text{ là số nguyên dương}\right)\)

\(.n=5k+1\Rightarrow n^4\text{ chia 5 dư 1}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+2\Rightarrow n^4\text{ chia 5 dư 1}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+3\Rightarrow n^4\text{ chia 5 dư 3}\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)

\(.n=5k+4\Rightarrow n^4\text{ chia 4 dư }1\Rightarrow n^4+4\text{ chia hết cho 5 và lớn hơn 5 nên là hợp số}\)
Vậy: n=5

bạn có thể chứng minh bài toán phụ sau: với n là số tự nhiên và n không chia hết cho 5 thì n^4 chia 5 dư 1

18 tháng 3 2020

\(n^{2003}+n^{2002}+1=n^{2003}-n^2+n^{2002}-n+n^2+n+1\)

\(=n^2\left(n^{2001}-1\right)+n\left(n^{2001}-1\right)+n^2+n+1\)

chia hết cho n2+n+1 nên là hợp số khi n>1

thử lại n=1 thỏa mãn

26 tháng 10 2020

\(B=n^4-27n^2+121\)

\(B=n^4+22n^2+121-49n^2\)

\(B=\left(n^2+11\right)^2-49n^2\)

\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)

Vì n là số tự nhiên => \(n^2+11+7n>11\)

Để B là số nguyên tố

=> \(n^2-7n+11=1\)

\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)

26 tháng 3 2024

what

28 tháng 6 2016

Cô ơi, em thấy trường hợp n=-1 đâu đúng đâu

28 tháng 6 2016

Đúng rồi đó, vừa nãy cô quên không kiểm tra điều kiện, cô chữa lại nhé :)

Ta phân tích A thành nhân tử \(A=\left(2n^2+2n+1\right)\left(n^2+2n+2\right)\)

Để A là số nguyên tố thì  ta có \(\hept{\begin{cases}2n^2+2n+1=1\\n^2+2n+2>1\end{cases}}\) hoặc \(\hept{\begin{cases}n^2+2n+2=1\\2n^2+2n+1>1\end{cases}}\)

Từ đó suy ra n = 0. Khi đó A = 2.

5 tháng 8 2015

1) n+ 4 = (n+ 4n+ 4) - 4n= (n2 + 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1 \(\ge\) 1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

5 tháng 8 2015

mấy bn này toàn bình luận, trong khi đó bài mk...

22 tháng 7 2016

a) Cần chứng minh : \(a^4-1\)chia hết cho 5 với mọi a là số tự nhiên.

Thật vậy : Với mọi số tự nhiên a không chia hết cho 5, sẽ có một trong các dạng : \(a=5k\pm1,a=5k\pm2\)(k thuộc N)

\(a^2\)có một trong hai dạng \(5k+1\)hoặc \(5k+4\)

\(a^4\)có một dạng duy nhất là \(5k+1\). Vậy \(a^4-1⋮5\)với mọi a là số tự nhiên.

Ta biểu diễn : \(A=\left(n^4-1\right)+5\) . Nhận thấy n4-1 chia hết cho 5 , 5 chia hết cho 5 => A chia hết cho 5. Mà A là số nguyên tố, vậy A = 5. Suy ra được n = 1

b) Với n = 1 , dễ thấy B = 5 là số nguyên tố

Với n = 2 , B = 32 không là số nguyên tố.

Với n = 3 , B = 145 không là số nguyên tố

Xét với n là số nguyên tố, n > 3, biểu diễn B dưới dạng : \(B=\left(n^4-1\right)+\left(4^n+1\right)\)

Dễ thấy n4-1 chia hết cho 5 , \(4^n+1=4^n+1^n=\left(4+1\right).M=5M⋮5\)

Suy ra B chia hết cho 5. Mà B là số nguyên tố, vậy B = 5. Vậy n = 1 thỏa mãn đề bài

26 tháng 7 2018

\(P=n^3-n^2+n-1\)

\(=n^2\left(n-1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2+1\right)\)

Đế P là số nguyên tố thì:  \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\left(TM\right)\\n=0\left(L\right)\end{cases}}\)

Vậy n= 2