Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5: Số nhóm chia được nhiều nhất mà số bạn nam trong mỗi nhóm đều như nhau, số nữ trong mỗi nhóm đều như nhau là ƯCLN(18; 24)
Ta có: 18 = 2 . \(3^2\)
24 = \(2^3\). 3
=> ƯCLN(18; 24) = 2 . 3 = 6
=> Số nhóm chia được nhiều nhất là 6 nhóm
Số bạn nữ trong mỗi nhóm là: 24 : 6 = 4(bạn)
Số bạn nam trong mỗi nhóm là: 18 : 6 = 3(bạn)
Đáp số: Số nhóm chia được nhiều nhất là 6 nhóm
Số bạn trong mỗi nhóm: Nữ: 4 bạn
Nam: 3 bạn
Bài 6: Số đĩa chia được nhiều nhất mà số quả mỗi loại trong các đĩa bằng nhau là ƯCLN(80; 36 ; 104)
Ta có: 80 = \(2^4\). 5
36 = \(2^2\). \(3^2\)
104 = \(2^3\) . 13
=> ƯCLN(80, 36, 104) = \(2^2\)= 4
=> Số đĩa chia được nhiều nhất là 4 đĩa
Số cam trong mỗi đĩa là: 80 : 4 = 20(quả)
Số quýt trong mỗi đĩa là: 36 : 4 = 9(quả)
Số mận trong mỗi đĩa là: 104 : 4 = 26(quả)
Đáp số: Số đĩa chia được nhiều nhất là 4 đĩa
Số quả trong mỗi đĩa: Cam: 20 quả
Quýt: 9 quả
Mận : 26 quả
Bài 7: Gọi số sách trong tủ là a.
Một tủ sách khi xếp thành từng bó 8 cuốn, 12 cuốn, 15 cuốn đều vừa đủ bó
=> a là BC(8, 12, 15)
Ta có: 8 = \(2^3\)
12 = \(2^2\). 3
15 = 3 . 5
=> BCNN(8, 12, 15) = \(2^3\). 3 . 5 = 120
=> BC(8, 12, 15) = { 0, 120, 240, 360, 480, 600, ... }
Theo bài ra, ta có: 400 \(\le\) a \(\le\) 500
=> a = 480
Vậy số sách trong tủ là 480 quyển
Bài 8: Gọi số học sinh tham gia diễu hành là a
Khối học sinh khi tham gia diễu hành nếu xếp hàng 12; 15; 18 đều dư 7 học sinh
=> (a - 7) là BC(12; 15; 18)
Ta có: 12 = \(2^2\). 3
15 = 3 . 5
18 = 2 . \(3^2\)
=> BCNN(12; 15; 18) = \(2^2\). \(3^2\). 5 = 180
=> BC(12; 15; 18) = { 0, 180, 360, 540, 720,...}
Theo bài ra ta có : 350 \(\le\) a \(\le\) 400 =>357 \(\le\) (a - 7) \(\le\) 407
=> (a - 7) = 360
=> a = 360 - 7
=> a = 353
Vậy số học sinh tham gia diễu hành là 353 em.
Số nhóm chia được nhiều nhất mà số bạn nam va nữ đều như nhau thi sẽ thuộc ƯCLN(18;24)
18=2.3^2
24=2^3.3
ƯCLN(18;24)=2.3=6
Số nhóm chia nhiều nhất là 6 nhóm.
Số bạn nữ của mỗi nhóm là
24:6=4(bạn)
Số bạn nam của mỗi nhóm là
18:6=3
Vậy:Số nhóm là 6
Nữ:4 bạn
Nam:3 bạn.
Nhớ k cho mình nhé.
S
Bài 1:
Gọi số nhóm chia được là a (a thuộc N*)
Theo bài ra ta có:
18 chia hết cho a ; 24 chia hết cho a
=> a thuộc ƯC(18,24)
Ta có :
18= (1;2;3;6;9;18) ( ngoặc ( ở đây là ngoặc nhọn)
24 = (1;2;3;4;6;8;12;24)
=> ƯC(18,24) = ( 1;2;3;6)
Vậy có thể chia nhiều nhất thành 6 nhóm.
Khi đó, mỗi nhóm có:
Số bạn nam là:
18 : 6 = 3 (bạn)
Số bạn nữ là:
24 : 6 = 4 (bạn)
Bài 2:
Gỉai
Gọi a là số tổ dự định chia (a thuộcN)và a ít nhất
Theo bài ra ta có:
28 chia hết cho a;24 chia hết cho a
Do đó a là ƯC (28;24)
28=2mũ2.7
24=2mũ3.3
ƯCLN(28:24)=2mũ2=4
Suy ra ƯC(24:28)=Ư(4)=(1:2:4)
Vậy có 3 cách chia số nam và nữ vào các tổ đều nhau.
Chia cho lớp thành 4 tổ thì mỗi tổ có số học sinh ít nhất
1.
Gọi số nhóm có thể chia được nhiều nhất là a
Theo đề bài ta có:
\(60⋮a\)
\(72⋮a\) => a=ƯCLN (60;72)
Và a là số lớn nhất
Tìm ƯCLN(60;72)
Ta có: 60= 22.3.5
72=23.32
ƯCLN(60;72) =22.3=12
a)Có thế chia được nhiều nhất là 12 nhóm
b)Khi đó mỗi nhóm có số nam: 60 : 12= 5 (nam)
Khi đó mỗi nhóm có số nữ:72:12=6 (nữ)
chỗ theo đề bài ta có là \(60⋮a\) ; \(72⋮a\) và a là số lớn nhất nha
Bài 1: Bài giải
Gọi số học sinh của trường đó là : a
T/có: a chia hết cho 8; 12; 15 . Suy ra BC (8; 12; 15 ) = 120
8 =23 ; 12 =22 . 3 ; 15 = 3.5
BC (8; 12; 15) =23.3.5= 120
a = BC ( 8; 12; 15 ) = B ( 120 ) = 0; 120; 240; 360; 480; 600; ....
Mà 400 < a < 500
Vậy số học sinh của trường đó là : 480 học sinh
Bài 2 Bài giải
Gọi số dĩa chia được là : b
T/có : 80; 36; 104 chia hết cho b. Suy ra b thuộc ƯC ( 80; 36; 104 )
80 = 24 . 5 ; 36 = 22 . 32 ; 104 = 24. 7
ƯC ( 80 ;36 ; 104 )= 22 = 4
Vậy số dĩa chia được là 4 dĩa
Số quả cam 1 dĩa có là : 80: 4 = 20 ( quả )
Số quả quýt 1 dĩa có là : 36: 4 = 9 ( quả )
Số quả mận 1 dĩa có là : 104 : 4 = 26 ( quả )
Lời giải bạn xem ở đường link dưới đây:
Câu hỏi của umi - Toán lớp 6 - Học toán với OnlineMath
Giải:
Vì số nam và số nữ trong mỗi nhóm đều bằng nhau nên số nhóm là ước chung của 18 và 24
Vì số nhóm là nhiều nhất nên só nhóm là ước chung lớn nhất của 18 và 24
18 = 2.32
24 = 23.3
ƯCLN(18; 24) = 2.3 = 6
Vậy có thể chia nhiều nhất thành 6 nhóm
Mỗi nhóm có số học sinh nữ là: 24 : 6 = 4 (học sinh)
Mỗi nhòm có số học sinh nam là: 18 : 6 = 3 (học sinh nam)
Kết luận:
1) Gọi số học sinh của khối 6 là : k ( k thuộc N ; 200 <=k<=400)
Ta có : k-3 chia hết cho 12;15;18
=> k-3 thuộc BC(12;15;18)
BCNN(12;15;18)=180
=> k-3 thuộc B(180)=0;180;360;540;...
Vì 200<=k<=400 nên k-3=360
=> k=363
2) Gọi số rổ có thể chia nhiều nhất là k
Ta có : k thuộc UCLN(12;144;420)
UCLN(12;144;420)=12
=> k=12
Vậy có thể chia được nhiều nhất 12 rổ
3) Gọi số tổ có thể chia là : k
Ta có : k thuộc UCLN(42;56)
UCLN(42;56)=14
=> k=14
Vậy có thể chia được nhiều nhất 14 tổ
Khi đó mỗi tổ có : 42:14=3( nam )
56:14=4( nữ )
Câu 1:
Gọi a là số học sinh cần tìm
Ta có: \(a-3⋮12,a-3⋮15,a-3⋮18\), \(197\le a-3\le397\)
=> a-3 ϵ BC (12;15;18)
12= 22. 3
15= 3.5
18= 2. 32
BCNN (12;15;18)= 22.32.5= 180
BC ( 12;15;18)= B(180)= {0; 180; 360; 540;...}
=> a-3= 360
a= 360 +3= 363
Vậy có 363 học sinh
Câu 2:
Gọi a là số rổ cần tìm
Ta có: \(12⋮a,144⋮a,420⋮a\), a lớn nhất
=> a là ƯCLN (12;144;420)
12= 22.3
144= 24.32
420= 22.3.5.7
ƯCLN ( 12;144;420)= 22.3= 12
Vậy có thể chia được nhiều nhất là 12 rổ
Câu 3:
Gọi a là số tổ cần tìm
Ta có: \(42⋮a,56⋮a\), a lớn nhất
=> a là ƯCLN ( 42;56)
42= 2.3.7
56= 23.7
ƯCLN ( 42;56)= 2.7= 14
Vậy có thể chia được nhiều nhất 14 tổ
Số học sinh nam mỗi tổ có là:
42 : 14= 3 ( nam)
Số học sinh nữ mỗi tổ có là:
56 : 14= 4 (nữ)
Gọi số nhóm chia được là x
Theo đề bài ta có 18 ⋮ x; 24 ⋮ x nên x ∈ ƯC(18;24)
Mà x lớn nhất => x = ƯCLN(18;24)
Ta có 18 = 2 . 3 2 ; 24 = 2 3 . 3
=> ƯCLN(18;24) = 2.3 = 6
Vậy có thể chia được nhiều nhất thành 6 nhóm
Khi đó mỗi nhóm có 18 : 6 = 3 bạn nam, 24 : 6 = 4 bạn nữ