\(\Delta ABC\) có \(AB=\sqrt{a^2+b^2},BC=\sqrt{b^2+c^2},AC=\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

\(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{a^2+b^2+a^2+c^2-b^2-c^2}{2AB.AC}=\frac{a^2}{AB.AC}>0\)

\(\Rightarrow A< 90^0\)

Tương tự ta có: \(cosB=\frac{b^2}{AB.BC}>0\Rightarrow B< 90^0\)

\(cosC=\frac{c^2}{AC.BC}>0\Rightarrow C< 90^0\)

\(\Rightarrow\Delta ABC\) là tam giác nhọn

26 tháng 1 2017

Bài 3:

Áp dụng BĐT Cauchy-Schwarz dạng engel ta có:

\(T=\frac{9}{x}+\frac{4}{2-x}=\frac{3^2}{x}+\frac{2^2}{2-x}\)

\(\ge\frac{\left(3+2\right)^2}{x+2-x}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(x=\frac{6}{5}\)

Vậy \(Min_T=\frac{25}{2}\) khi \(x=\frac{6}{5}\)

1 tháng 2 2021
Ba bc bb cc ca cb
NV
14 tháng 3 2020

Ta có:

\(cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{9+12-25}{2.3.2\sqrt{3}}=-\frac{1}{3\sqrt{3}}< 0\)

\(\Rightarrow C>90^0\)

\(\Rightarrow\Delta ABC\) là tam giác tù

21 tháng 8 2016

Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)

\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)

VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)

Dấu''='' xra\(\Leftrightarrow\)a=b=c

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:

\((a^2+2c^2)(1+2)\geq (a+2c)^2\)

\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)

\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)

Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)

Cộng theo vế các BĐT trên thu được:

\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=3$

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.

Áp dụng BĐT AM-GM ta có:

\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)

\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)

\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)

Cộng theo vế:

\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)

\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)

Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)