K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: EC=DB

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có 

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
Do đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

19 tháng 2 2020

Ai trả lời giúp mình với mình đang cần gấp

19 tháng 2 2020

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

=>BE=DC

=>AE=AD

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

=>A,I,M thẳng hàng

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `2\Delta` vuông và `BEC` và `CDB`:

`\text {BC chung}`

$\widehat {B} = \widehat {C}$

`=> \Delta BEC = \Delta CDB (ch-gn)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)

`-> \text {AE = AD}`

Xét `2\Delta` vuông `AEI` và ` ADI`:

`\text {AE = AD}`

`\text {AI chung}`

`=> \Delta AEI = \Delta ADI (ch-cgv)`

`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$

`-> \text {AI là tia phân giác của}` $\widehat {EAD}$

Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)

`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`

`c,`

Vì M là trung điểm của AC

`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`

Từ `(1)` và `(2)`

`-> \text {Ba điểm A, I, M thẳng hàng.}`

loading...

3 tháng 12 2016

a)xét ΔEBC và ΔDBC có:

BC : cạnh chung

góc BEC = góc BDC ( góc vuông)

góc ABC = góc ACB ( vì AB = AC--> ΔABC cân tại A---> góc ABC = góc ACB)

---> ΔEBC = ΔDCB ( cạnh huyền- góc nhọn)

--->BD = CE ( hai cạnh tương ứng)

b)Xét ΔOEB và ΔODC có :

góc BEC = góc BDC ( góc vuông)

góc EOB = góc DOB ( đối đỉnh)

---> góc EBO = góc DCO

EB = DC (ΔEBC = ΔDCB )

---> ΔOEB = ΔODC ( g.c.g)

c) Xét ΔABO và ΔACO có :

AO : cạnh chung

AB = AC ( GT)

BO = CO ( ΔOEB = ΔODC)

--->ΔABO = ΔACO ( c.c.c)

---> góc BAO= góc CAO ( hai góc tương ứng)

---> AO là tia phân giác của góc BAC

 

Hỏi đáp Toán

 

 

 

 

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
a. Xét tam giác $ABD$ và $ACE$ có:

$\widehat{A}$ chung 

$\widehat{ADB}=\widehat{AEC}=90^0$

$AB=AC$ (gt)

$\Rightarrow \triangle ABD=\triangle ACE$ (ch-gn)

$\Rightarrow BD=CE$ 

b. Từ tam giác bằng nhau phần a suy ra $AD=AE$

Mà $AB=AC$

$\Rightarrow AB-AE=AC-AD$ hay $BE=CD$

Xét tam giác $OEB$ và $ODC$ có:

$\widehat{EOB}=\widehat{DOC}$ (đối đỉnh)

$\widehat{OEB}=\widehat{ODC}=90^0$

$EB=DC$ (cmt)

$\Rightarrow \triangle OEB=\triangle ODC$ (ch-cgv) 

c.

Từ tam giác bằng nhau phần b suy ra $OB=OC$

Xét tam giác $ABO$ và $ACO$ có:

$AO$ chung 

$AB=AC$ (gt)

$BO=CO$ (cmt)

$\Rightarrow \triangle ABO=\triangle ACO$ (c.c.c)

$\Rightarrow \widehat{BAO}=\widehat{CAO}$ 

$\Rightarrow AO$ là tia phân giác $\widehat{BAC}$ (đpcm)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Hình vẽ:

30 tháng 12 2021

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

18 tháng 3 2022

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

18 tháng 3 2022

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...