Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên
0=−a+b0=−a+b
<−>a=b<−>a=b
Xét ptrinh hoành độ giao điểm
12x2=ax+a12x2=ax+a
<−>x2−2ax−2a=0<−>x2−2ax−2a=0
Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay
a2+2a=0a2+2a=0
<−>a(a+2)=0<−>a(a+2)=0
Vậy a=0a=0 hoặc a=−2a=−2
Do a≠0a≠0 nên a=−2a=−2.
Vậy y=−2x−2y=−2x−2
(d) đi qua A(-2;2) <=> 2 = -2a + b (1)
Hoành độ giao điểm tm pt
\(\dfrac{1}{2}x^2=ax+b\Leftrightarrow x^2-2ax-2b=0\)
\(\Delta'=a^2-\left(-2b\right)=a^2+2b\)
Để (P) tiếp xúc (d) \(a^2+2b=0\)(2)
Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\a^2+2b=0\end{matrix}\right.\)bạn tự giải nhé
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
\(\Rightarrow4=1^2=1\) ( vô lí )
=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = \(x^2\) luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)
⇒4=12=1⇒4=12=1 ( vô lí )
=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)
2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k
=> 4 = k . 1
=> k = 4
=> Phương trình đường thẳng (d) là
y = 4x
a ) Với k = 2 , ta có (d) : y= 2x
Phương trình hoành độ giao điểm của (d) và (P) là
x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0
⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4
Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )
b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ
(P) y = x2x2 luôn đi qua gốc tọa độ
=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )
Vì P đi qua điểm A
Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)
Ý b thiếu dữ kiện à bn ơi ?
í b thiếu dữ kiện