K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Do đường thẳng đã cho đi qua A(−1,0)A(−1,0) nên

0=−a+b0=−a+b

<−>a=b<−>a=b

Xét ptrinh hoành độ giao điểm

12x2=ax+a12x2=ax+a

<−>x2−2ax−2a=0<−>x2−2ax−2a=0

Do hai đồ thị tiếp xúc nên ptrinh trên có 1 nghiệm duy nhất, tức là Δ′=0Δ′=0 hay

a2+2a=0a2+2a=0

<−>a(a+2)=0<−>a(a+2)=0

Vậy a=0a=0 hoặc a=−2a=−2

Do a≠0a≠0 nên a=−2a=−2.

Vậy y=−2x−2y=−2x−2

15 tháng 7 2020

cá voi xanh không ? :))))

26 tháng 2 2022

(d) đi qua A(-2;2) <=> 2 = -2a + b (1) 

Hoành độ giao điểm tm pt 

\(\dfrac{1}{2}x^2=ax+b\Leftrightarrow x^2-2ax-2b=0\)

\(\Delta'=a^2-\left(-2b\right)=a^2+2b\) 

Để (P) tiếp xúc (d) \(a^2+2b=0\)(2) 

Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\a^2+2b=0\end{matrix}\right.\)bạn tự giải nhé 

3 tháng 2 2021

1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)

\(\Rightarrow2x^2-ax-b=0\left(I\right)\)

Mà (P) tiếp xúc với d .

Nên PT ( I ) có duy nhất một nghiệm .

\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)

Lại có : d đi qua A .

\(\Rightarrow b+0a=-2=b\)

\(\Rightarrow a=4\)

2. Tương tự a

3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)

\(\Rightarrow2x^2-2m-1=0\)

Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)

=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)

11 tháng 3 2019

1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)

\(\Rightarrow4=1^2=1\) ( vô lí )

=> A ( \(1;4\) ) không thuộc đồ thị hàm số (P)

2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k

=> 4 = k . 1

=> k = 4

=> Phương trình đường thẳng (d) là

y = 4x

a ) Với k = 2 , ta có (d) : y= 2x

Phương trình hoành độ giao điểm của (d) và (P) là

\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2x=0\\x=2\Rightarrow y=2x=4\end{matrix}\right.\)

Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )

b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ

(P) y = \(x^2\) luôn đi qua gốc tọa độ

=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )

7 tháng 11 2019

1. Thay x = 1 ; y = 4 vào đồ thị hàm số (P)

⇒4=12=1⇒4=12=1 ( vô lí )

=> A ( 1;41;4 ) không thuộc đồ thị hàm số (P)

2) (d) đi qua A ( 1; 4 ) và có hệ số góc bằng k

=> 4 = k . 1

=> k = 4

=> Phương trình đường thẳng (d) là

y = 4x

a ) Với k = 2 , ta có (d) : y= 2x

Phương trình hoành độ giao điểm của (d) và (P) là

x2=2x⇒x2−2x=0⇒x(x−2)=0x2=2x⇒x2−2x=0⇒x(x−2)=0

⇒[x=0⇒y=2x=0x=2⇒y=2x=4⇒[x=0⇒y=2x=0x=2⇒y=2x=4

Vậy giao điểm của (d) và (P) là các điểm có tọa độ (0;0 ) và ( 2;4 )

b ) Ta có (d) : y = kx , luôn đi qua gốc tọa độ

(P) y = x2x2 luôn đi qua gốc tọa độ

=> Với mọi giá trị của k , đường thẳng (d) luôn cắt (P) y = x^2 ( tại gốc tọa độ )