Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b:ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
a) Do ABCD là hình bình hành
AB // CD
⇒ AM // CN
Tứ giác AMCN có:
AM // CN (cmt)
AM = CN (gt)
⇒ AMCN là hình bình hành
⇒ AN // CM
b) Do ABCD là hình bình hành
O là giao điểm của AC và BD
⇒ O là trung điểm của AC
Lại có AMCN là hình bình hành
O là trung điểm của AC (cmt)
⇒ O là trung điểm của MN
a) Ta có : tứ giác ABCD là hình bình hành (gt)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của AC (1)
và O là trung điểm của BD
\(\Rightarrow OB=OD\)
mà \(DE=BF\left(gt\right)\)
\(\Rightarrow OB-BF=OD-DE\)
\(\Rightarrow OF=OE\)
\(\Rightarrow\)O là trung điểm của EF (2)
Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành
b) Ta có : tứ giác AECF là hinh bình hành (cma)
\(\Rightarrow AE//CF\)
\(\Rightarrow AM//CN\left(3\right)\)
Ta có : tứ giác ABCD là hinh bình hành (gt)
\(\Rightarrow AB//CD\)
\(\Rightarrow AN//CM\left(4\right)\)
TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành
\(\Rightarrow AM=CN\)
c) Ta có : tứ giác ANMC là hinh bình hành (cmb)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của NM
và O là trung điểm của AC
mà O là trung điểm của BD
\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm
1:
Xet ΔOAE và ΔOCF có
góc OAE=góc OCF
góc AOE=góc COF
=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF
Xét ΔOEB và ΔOFD có
góc OEB=góc OFD
góc EOB=góc FOD
=>ΔOEB đồng dạng với ΔOFD
=>EB/FD=OE/OF=AE/CF
mà CF=DF
nên EB=AE
=>E là trung điểm của BA
Bài 1 :
a. AB//CD (ABCD là hình bình hành) M thuộc AB N thuộc CD => BM // DN
Xét tứ giác AMCN có:
MB=DN (gt)
BM// DN
=> tứ giác AMCN là hình bình hành
b. Gọi giao điểm của AC và BD là O
=> O là trung điểm của AC và BD (tính chất hình bình hành)
Hình bình hành MBND có
O là trung điểm của BD
MN là đường chéo hình bình hành MBND
O là trung điểm MM
=> MN đi qua O
=> AC,BD,MN đồng quy tại một điểm
c.
Bài 2 :
a. AB = CD (ABCD là hình bình hành)
Mà AB = BE (A đối xứng E qua B)
=> CD=BE
AB // CD (ABCD là hình bình hành)
Mà E thuộc AC
=> CD//BE
Xét tứ giác DBEC:
CD=BE (CM)
CD//BE (CM)
=> DBEC là hình bình hành
b.