Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
a)Để B thuộc Z
=>5 chia hết n-3
=>n-3 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {4;2;8;-2}
với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?
Áp dụng BĐT Cô si cho 3 số dương ta được
\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}\)
=> \(a^3+2\ge3a\)
Áp dụng tương tự có
\(ab+1\ge2\sqrt{ab.1}\)
=>\(ab+1\ge2\sqrt{ab}\)
=>\(\frac{a^3+2}{ab+1}\ge\frac{3a}{2\sqrt{ab}}\)
=> \(\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a}{b}}\)
Chứng minh tương tự thì Q\(\ge\frac{3}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\right)\)
Áp dụng cô si lần nữa thì \(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{a}}\ge\sqrt{\sqrt{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}}=1\)
=>Q\(\ge\frac{3}{2}\)
Min Q=3/2.
#)Mất công lắm tui ms tìm đc cách bải này đấy, xin đừng cho ăn gạch đá :v
Ta có (a^3+2)/(ab+1) = 1/2.(2a^3+4)/(ab+1)
Mà 2a^3+4= (a^3+a^3+1) +3
Mặt khác theo BĐT CBS ta có a^3+a^3+1≥ 3a^2
=>2a^3 +4≥ 3(a^2+1)
Tương tự với (b^3 + 2)/(bc + 1) và (c^3 + 2)/(ca + 1)
=>Q ≥ 3/2[(a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1)]
Theo BĐT CBS=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3.căn bặc ba của [(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]
Mà theo bất đẳng thức bunhicốpxki
=>(a^2+1)(b^2+1)≥(ab+1)^2
(b^2+1)(c^2+1)≥(bc+1)^2
(c^2+1)(a^2+1)≥(ac+1)^2
=>[(a^2+1)(b^2+1)(c^2+1)]/[(ab+1)(bc+1)(ac+1)]≥1
=> (a^2+1)/(ab+1) +(b^2+1)/(bc+1) +(c^2+1)/(ca+1) ≥ 3
=> Q ≥9/2
Dấu bằng xảy ra <=> a=b=c=1
P/s : trả công ( đùa tí :P )
#~Will~be~Pens~#
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
a: ĐK của A là x<>-3; x<>2
ĐKXĐ của B là x<>3
DKXĐ của C là x<>0; x<>4/3
ĐKXĐ của D là x<>-2
ĐKXĐ của E là x<>2; x<>-2
ĐKXĐ của F là x<>2
b,c:
\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
Để A=0 thì 2=0(loại)
\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
Để B=0 thì x+3=0
=>x=-3
\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
Để C=0 thì 3x+4=0
=>x=-4/3
\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
Để D=0 thì x+2=0
=>x=-2(loại)
\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)
Để E=0 thì x=0
\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
Để F=0 thì 3=0(loại)
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.