Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

a) 23 = 8; 24 = 16; 25 = 32; 26 = 64; 27 = 128; 28 = 256; 29 = 512; 210 = 1024
b) 32 = 9; 33 = 27; 34 = 81; 35 = 243
c) 42 = 16; 43 = 64; 44 = 256
d) 52 = 25; 53 = 125; 54 = 625
c) 62 = 36; 63 = 216; 64 = 1296
a) 23 = 8; 24 = 16; 25 = 32; 26 = 64; 27 = 128; 28 = 256; 29 = 512; 210 = 1024
b) 32 = 9; 33 = 27; 34 = 81; 35 = 243
c) 42 = 16; 43 = 64; 44 = 256
d) 52 = 25; 53 = 125; 54 = 625
e) 62 = 36; 63 = 216; 64 = 1296
HT

a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
b) \(5^3\cdot2-100:4+2^3\cdot5\)
\(=125\cdot2-25+8\cdot5\)
\(=250-25+40\)
\(=225+40=265\)
c) \(6^2:9+50\cdot2+3^3-3\)
\(=36:9+100+27-3\)
\(=4+100+27-3\)
\(=104+27-3=131-3=128\)
d) \(3^2\cdot5+2^3\cdot10-81:3\)
\(=9\cdot5+8\cdot10-27\)
\(=45+80-27\)
\(=125-27=98\)
e) \(5^{13}:5^{10}-25\cdot2^2\)
\(=5^{13-10}-5^2\cdot2^2\)
\(=5^3-\left(5\cdot2\right)^2\)
\(=125-10^2\)
\(=125-100=25\)
f) \(20:2^2+5^9:5^8\)
\(=20:4+5^{9-8}\)
\(=5+5^1=5+5=10\)
g) \(100:5^2+7\cdot3^2\)
\(=10^2:5^2+7\cdot9\)
\(=\left(10:5\right)^2+63\)
\(=2^2+63=4+63=67\)
h) \(84:4+3^9:3^7+5^0\)
\(=21+3^{9-7}+1\)
\(=21+3^2+1\)
\(=21+9+1=30+1=31\)
i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)
\(=29-\left[16+3\cdot2\right]\)
\(=29-\left[16+6\right]\)
\(=29-22=7\)
j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)
\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)
Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0
k) \(7^9:7^7-3^2+2^3\cdot5\)
\(=7^{9-7}-9+8\cdot5\)
\(=7^2-9+40\)
\(=49-9+40=40+40=80\)
l) \(1200:2+6^2\cdot2^1+18\)
\(=600+36\cdot2+18\)
\(=600+72+18\)
\(=600+\left(72+18\right)=600+90=690\)
m) \(5^9:5^7+70:14-20\)
\(=5^{9-7}+5-20\)
\(=5^2+5-20\)
\(25+5-20=30-20=10\)
Những câu sau mình làm sau nhé bạn!!!!!!!

A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
Viết thế này cho dễ hiểu nhé :
Câu 1 : 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Câu 2 :
2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
Câu 3:
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) Bạn hãy xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a=2mu 101 - 2
b= 3 mu 2010 - 1
c=5mu 1999-1
d=4 mu n . 4 -4
a=2+22+...+2100
2a=22+23+24+...+2101
a=2a-a=a
=> a= 22+23+24+..+2101 -(2+2^2+...+2^100)
=>a= 2^101 -2