Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
a: Sxq=1/2*2,2*2,5*4=11m2
b: Diện tích cần làm mái che là: 11+2,5^2=17,25m2
Số tiền cần chi là:
17,25*2000000=34500000(đồng)
Diện rích một mặt bên là hình thang bằng:
S =1/2 (5 +10).5=37,5 ( c m 2 )
Diện tích xung quanh của hình chóp
cụt đều là: S x q =4.3,75 = 150 ( c m 2 )
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
Sxq=1/2*40*13=20*13=260cm2
Độ dài cạnh ở đáy là 40/4=10cm
V=10^2*12=1200cm3
Gọi \(a\) là cạnh đáy hình chóp tứ giác đều \(\left(cm\right)\)
\(h\) là chiều cao hình chóp tứ giác đều \(\left(cm\right)\)
\(d\) là trung đoạn\(\left(cm\right)\)
Ta có :
\(S_{xq}=4S=4.\dfrac{1}{2}a.d=2ad\)
mà \(d^2=h^2+\dfrac{a^2}{4}\Rightarrow d=\sqrt[]{h^2+\dfrac{a^2}{4}}\)
\(\Rightarrow S_{xq}=2a\sqrt[]{h^2+\dfrac{a^2}{4}}\)
\(\Leftrightarrow S^2_{xq}=4a^2\left(h^2+\dfrac{a^2}{4}\right)=4a^2h^2+a^4\)
\(\Leftrightarrow a^4+4a^2h^2-S^2_{xq}=0\)
\(\Leftrightarrow a^4+4a^2.36-36^2=0\)
\(\Leftrightarrow a^4+144a^2-1296=0\left(1\right)\)
\(\Delta'=5184+1296=6480\Rightarrow\sqrt[]{\Delta'}=36\sqrt[]{5}\)
Pt (1) có nghiệm \(a^2=-72+36\sqrt[]{5}=36\left(1-\sqrt[]{5}\right)\)
\(\)\(\Rightarrow a=6\sqrt[]{1-\sqrt[]{5}}\left(cm\right)\) (cạnh đáy là hình vuông)
Vậy cạnh đáy tứ giác đều là \(a=6\sqrt[]{1-\sqrt[]{5}}\left(cm\right)\)
Đính chính
\(...a^2=-72+36\sqrt[]{2}=36\left(\sqrt[]{5}-2\right)\)
\(\Rightarrow a=6\sqrt[]{\sqrt[]{5}-2}\left(cm\right)\)
Vậy cạnh tứ giác đều là \(a=6\sqrt[]{\sqrt[]{5}-2}\left(cm\right)\)