Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Xét \(\Delta ABC\) và \(\Delta MNP\) có:
\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)
Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)
Xét \(\Delta DEF\) và \(\Delta GHK\) có:
\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)
Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)
xét tam giác MKQ và tam giác MPN có
góc QMN = góc PMN = 90 độ
góc K = góc MPN (gt)
QK=PN (gt)
Suy ra tam giác MKQ = tam giác MPN (cạnh huyền - góc nhọn)
1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK
góc tương ứng với góc H là góc A.
ta có : ∆ ABC= ∆ HIK
Suy ra: AB=HI, AC=HK, BC=IK.
=, =,=.
b,
∆ ABC= ∆HIK
Suy ra: AB=HI=2cm, BC=IK=6cm, ==400
2.
Ta có ∆ABC= ∆ DEF
Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.
Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)
Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm
Vì \(\widehat{BAE}=\widehat{CDE}=90^0 (gt)\)
`->` Tam giác `ABE` vuông tại `A,` Tam giác `ECD` vuông tại `D.`
Xét Tam giác `ABE:`\(\widehat{A}=90^0\) `->` 2` góc \(\widehat{B}\) và \(\widehat{E}\) phụ nhau
`->`\(\widehat{ABE}+\widehat{AEB}=90^0\) `->`\(\widehat{ABE}=90^0-\widehat{AEB}\)
Xét Tam giác `DEC:`\(\widehat{D}=90^0\) `->` \(\widehat{E}\) và \(\widehat{C}\) phụ nhau
`->`\(\widehat{DCE}+\widehat{DEC}=90^0\) `->`\(\widehat{DCE}=90^0-\widehat{DEC}\)
Mà \(\widehat{AEB}=\widehat{DEC}\) `(2` góc đối đỉnh `)`
`->`\(90^0-\widehat{DEC}=90^0-\widehat{AEB}\) `->`\(\widehat{ABE}=\widehat{DCE}\)
Xét Tam giác `DEC` và Tam giác `AEB:`
`AB=CD`
\(\widehat{ABE}=\widehat{DCE}\)
`=>` Tam giác `DEC =` Tam giác `AEB (cgv-gn)`
\(\Delta AEB=\Delta DEC\left(g.c.g\right)\)