Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{a^2+b^2+a^2+c^2-b^2-c^2}{2AB.AC}=\frac{a^2}{AB.AC}>0\)
\(\Rightarrow A< 90^0\)
Tương tự ta có: \(cosB=\frac{b^2}{AB.BC}>0\Rightarrow B< 90^0\)
\(cosC=\frac{c^2}{AC.BC}>0\Rightarrow C< 90^0\)
\(\Rightarrow\Delta ABC\) là tam giác nhọn
Ta có :
\(m_a=\sqrt{\frac{b^2+c^2}{2}-\frac{a^2}{4}}=\frac{\sqrt{2b^2+2c^2-a^2}}{2}=\frac{\sqrt{2b^2+2c^2-\left(2c^2-b^2\right)}}{2}=\frac{\sqrt{3}b}{2}\)
\(m_b=\sqrt{\frac{c^2+a^2}{2}-\frac{b^2}{4}}=\frac{\sqrt{2c^2+2a^2-b^2}}{2}=\frac{\sqrt{2c^2+2a^2-\left(2c^2-a^2\right)}}{2}=\frac{\sqrt{3}a}{2}\)
\(m_c=\sqrt{\frac{a^2+b^2}{2}-\frac{c^2}{4}}=\frac{\sqrt{2a^2+2b^2-c^2}}{2}=\frac{\sqrt{4c^2-c^2}}{2}=\frac{\sqrt{3}c}{2}\)
\(\Rightarrow m_a+m_b+m_c=\frac{\sqrt{3}}{2}\left(a+b+c\right)\)
Hình như đề nhầm dấu thì phải
Ta có : \(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}\)
\(\Leftrightarrow\frac{2b.sinA}{sinB}.sinB=b\sqrt{3}\)
\(\Leftrightarrow2b.sinA=b\sqrt{3}\)
\(\Leftrightarrow sinA=\frac{\sqrt{3}}{2}\Rightarrow\widehat{A}=60^0\)
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900
Ta có:
\(cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{9+12-25}{2.3.2\sqrt{3}}=-\frac{1}{3\sqrt{3}}< 0\)
\(\Rightarrow C>90^0\)
\(\Rightarrow\Delta ABC\) là tam giác tù