K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2022

a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a + c/b + d < c/d

8 tháng 8 2022

cảm ơn bạn nhé

12 tháng 6 2018

Cho hai số hữu tỉ a/b và c/d,Chứng minh nếu a/b c/d thì ad bc,Chứng minh nếu ad bc thì a/b c/d,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Làm nhắn gọn hơn thì

1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb

2
​ad < cb
=>ad /bd < cb/bd

Chúc pn hc tốt

11 tháng 3 2017

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)

11 tháng 3 2017

cảm ơn nhé

Áp dụng tính chất dãy tỉ số bằng  nhau ta có

\(\frac{a+b}{b+c}=\frac{c+d}{c+a}=\frac{a+b+c+d}{a+b+c+d}\)

\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=c\end{cases}}\)

Sửa đề:

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{c+b}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{c+b}{d+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{c+d+b+d+c}{d+a}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c+d}{c+d}=\frac{c+d+b+a}{d+a}=\frac{\left(a+b+c+d\right)-\left(c+d+b+c\right)}{\left(c+d\right)-\left(d+a\right)}=\frac{0}{\left(c+d\right)-\left(d+a\right)}=0\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=0\)

Vì \(c+d\ne0\)

\(\Rightarrow a+b+c+d=0\left(đpcm\right)\)

và \(\frac{a+b+c+d}{c+d}-\frac{c+d+b+a}{d+a}=0\)

vd Thay a + b+ c= 1

ta có: \(\frac{1}{c+d}-\frac{1}{d+a}=0\)

\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}\)

\(\Rightarrow d+a=c+d\)

\(\Rightarrow a=c\left(đpcm\right)\)

hok tốt!!

Bài làm

Giả sử:  \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với ab, ta được

ad + ab > bc + ab

=> a( b + d ) > b( a + c )

\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)    (1)

Lại có: \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với dc, ta được:

ad + dc > bc + dc

=> d( a + c ) > c( b + d )

\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)            (2)

Từ (1) và (2)  \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )

31 tháng 7 2020

Cảm ơn bạn nha

7 tháng 6 2017

đề bài có bị lỗi ko bạn

7 tháng 6 2017

đề bài có lỗi ko bạn

24 tháng 10 2017

\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

<=>\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

<=> \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

<=> \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

<=> \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

<=> \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}\left(đpcm\right)}}\)

1 tháng 8 2015

Đặt = t => a = bt ; c = dt thay vào từng vế  

22 tháng 12 2015

Đặt a/b=c/d= t suy ra a=bt; c=dt

(a+b)/(a-b)= bt+b/bt-b = b(t+1)/b(t-1)=t+1/t-1 (1)

(c+d)/(c-d)= dt+d/dt-d = d(t+1)/d(t-1)=t+1/t-1 (2)

Từ (1) và (2) suy ra (a+b)/(a-b)= (c+d)/(c-d)