K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AE = EB = \frac{1}{2}AB\) (do \(E\) là trung điểm của \(AB\))

\(DF = FC = \frac{1}{2}CD\) (\(F\) là trung điểm của \(CD\))

\(AB = CD\) (do \(ABCD\) là hình bình hành)

Suy ra \(AE = CF = EB = DF\)

Xét tứ giác \(AECF\) ta có:

\(AE\) // \(CF\) (do \(AB\) // \(CD\))

\(AE = CF\)

Suy ra \(AECF\) là hình bình hành

b) Vì \(AB = 2AD\) (gt) và \(AB = 2AE\)  (do \(E\) là trung điểm của \(AB\))

Suy ra \(AD = AE\)

Xét tứ giác \(AEFD\) có \(AE\) // \(DF\) và \(AE = DF\) (cmt)

Suy ra \(AEFD\) là hình bình hành

Mà \(AE = AD\) (cmt)

Suy ra \(AEFD\) là hình thoi

c) Ta có \(AF \bot DE\) (do \(AEFD\) là hình thoi)

và \(AF\) // \(EC\) (\(AECF\) là hình bình hành)

Suy ra \(EC \bot DE\)

Suy ra \(\widehat {IEK} = 90^\circ \)

Vì \(AEFD\) là hình thoi nên \(EF = AE\)

Và \(AE = \frac{1}{2}AB\) (gt)

Suy ra \(EF = \frac{1}{2}AB\)

Xét \(\Delta AFB\) có \(FE\) là đường trung tuyến và \(EF = \frac{1}{2}AB\)

Suy ra \(\Delta AFB\) vuông tại \(F\)

Suy ra \(\widehat {{\rm{IFK}}} = 90\)

Xét tứ giác \(EIFK\) ta có:

\(\widehat {{\rm{EIF}}} = 90\) (do \(AF \bot DE\))

\(\widehat {{\rm{IEK}}} = 90^\circ \) (cmt)

\(\widehat {{\rm{IFK}}} = 90^\circ \) (cmt)

Suy ra \(EIFK\) là hình chữ nhật

d) \(EIFK\) là hình vuông

Suy ra \(FI = EI\)

Mà \(EI = ID = \frac{1}{2}DE\) ( do \(AEFD\) là hình thoi)

\(FI = IA = \frac{1}{2}AF\)  (do \(AEFD\) là hình thoi)

Suy ra \(AF = DE\)

Mà \(AEFD\) là hình thoi

Suy ra \(AEFD\) là hình chữ nhật

Suy ra \(\widehat {{\rm{ADC}}} = 90^\circ \)

Mà \(ABCD\) là hình bình hành (gt)

Suy ra \(ABCD\) là hình chữ nhật

Vậy nếu hình bình hành \(ABCD\) là hình chữ nhật thì \(EIFK\) là hình vuông

a: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

b: Xét tứ giác AEFD có 

AE//FD
AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

=>DE vuông góc với AF

Xét tứ giác BEFC có 

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

mà BC=BE

nên BEFC là hình thoi

=>EC vuông góc với BF

Xét ΔEDC có 

EF là đường trung tuyến

EF=DC/2

Do đó: ΔEDC vuông tại E

Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)

nên EMFN là hình chữ nhật

Suy ra: EF=MN

20 tháng 10 2023

Sửa đề: BC=2AB

a: \(BE=EC=\dfrac{BC}{2}\)

\(AF=FD=\dfrac{AD}{2}\)

mà BC=AD

nên BE=EC=AF=FD

Xét tứ giác ABEF có

BE//AF

BE=AF

Do đó: ABEF là hình bình hành

mà BE=BA(=1/2BC)

nên ABEF là hình thoi

b: Xét ΔIFA có

FB là đường trung tuyến

\(FB=\dfrac{IA}{2}\)

Do đó: ΔIFA vuông tại F

=>IF\(\perp\) AD
mà AD//BC

nên \(IF\perp BC\)

c: Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

=>BC cắt ID tại trung điểm của mỗi đường

mà E là trung điểm của BC

nên E là trung điểm của ID

=>I,E,D thẳng hàng