K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

Bài 8:

a: Xét tứ giác AEFD có 

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

mà AE=AD

nên AEFD là hình thoi

25 tháng 12 2021

hình đâu

 

15 tháng 12 2023

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB

30 tháng 5 2017

A D F M E B C N

a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).

b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.

Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.

c) Hình chữ nhật EMFN là hình vuông

\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)

\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau

\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).

\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.

Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

18 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là...
Đọc tiếp

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?

  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?

Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

  a. Chứng minh tứ giác ANDM là hình chữ nhật.

  b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

  c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

  a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

  b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

 

  c. Cho BC = 4cm, tính chu vi tứ giác AEBM.

1
18 tháng 12 2022

Bài 6:

a: Xét ΔABC có BD/BA=BM/BC

nên MD//AC

=>ME vuông góc với AB

=>E đối xứng M qua AB

b: Xét tứ giác AEBM có

D là trung điểm chung của AB và EM

MA=MB

Do đó; AEBM là hình thoi

Xét tứ giac AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

c: BM=BC/2=2cm

=>CAEBM=2*4=8cm

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AE = EB = \frac{1}{2}AB\) (do \(E\) là trung điểm của \(AB\))

\(DF = FC = \frac{1}{2}CD\) (\(F\) là trung điểm của \(CD\))

\(AB = CD\) (do \(ABCD\) là hình bình hành)

Suy ra \(AE = CF = EB = DF\)

Xét tứ giác \(AECF\) ta có:

\(AE\) // \(CF\) (do \(AB\) // \(CD\))

\(AE = CF\)

Suy ra \(AECF\) là hình bình hành

b) Vì \(AB = 2AD\) (gt) và \(AB = 2AE\)  (do \(E\) là trung điểm của \(AB\))

Suy ra \(AD = AE\)

Xét tứ giác \(AEFD\) có \(AE\) // \(DF\) và \(AE = DF\) (cmt)

Suy ra \(AEFD\) là hình bình hành

Mà \(AE = AD\) (cmt)

Suy ra \(AEFD\) là hình thoi

c) Ta có \(AF \bot DE\) (do \(AEFD\) là hình thoi)

và \(AF\) // \(EC\) (\(AECF\) là hình bình hành)

Suy ra \(EC \bot DE\)

Suy ra \(\widehat {IEK} = 90^\circ \)

Vì \(AEFD\) là hình thoi nên \(EF = AE\)

Và \(AE = \frac{1}{2}AB\) (gt)

Suy ra \(EF = \frac{1}{2}AB\)

Xét \(\Delta AFB\) có \(FE\) là đường trung tuyến và \(EF = \frac{1}{2}AB\)

Suy ra \(\Delta AFB\) vuông tại \(F\)

Suy ra \(\widehat {{\rm{IFK}}} = 90\)

Xét tứ giác \(EIFK\) ta có:

\(\widehat {{\rm{EIF}}} = 90\) (do \(AF \bot DE\))

\(\widehat {{\rm{IEK}}} = 90^\circ \) (cmt)

\(\widehat {{\rm{IFK}}} = 90^\circ \) (cmt)

Suy ra \(EIFK\) là hình chữ nhật

d) \(EIFK\) là hình vuông

Suy ra \(FI = EI\)

Mà \(EI = ID = \frac{1}{2}DE\) ( do \(AEFD\) là hình thoi)

\(FI = IA = \frac{1}{2}AF\)  (do \(AEFD\) là hình thoi)

Suy ra \(AF = DE\)

Mà \(AEFD\) là hình thoi

Suy ra \(AEFD\) là hình chữ nhật

Suy ra \(\widehat {{\rm{ADC}}} = 90^\circ \)

Mà \(ABCD\) là hình bình hành (gt)

Suy ra \(ABCD\) là hình chữ nhật

Vậy nếu hình bình hành \(ABCD\) là hình chữ nhật thì \(EIFK\) là hình vuông

28 tháng 2 2017

a) bạn tự vẽ hình nhé!

Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)

\(DF=CF=\frac{1}{2}DC\) (đề cho)

mà \(AB=CD\)

\(\Rightarrow\) \(AE=BE=DF=CF\)

Xét tứ giác AEFD có:

\(AE=DF\) (cmt) và AE//DF( AB//CD)

\(\Rightarrow\) Tứ giác AEFD là hình bình hành

Xét tứ giác AECF có :

AE = CF ( cmt) và AE//CF ( AB//CD)

\(\Rightarrow\) Tứ giác AECF là hình bình hành

28 tháng 2 2017

M là giao điểm của AF và DE

\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)

N là giao điểm của BF và CE

\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)

Có AF = AM + FM

CE = EN + CN

mà AE = CE ( AECF là hbh)

Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )

\(\Rightarrow\) EMFN là hình bình hành (3)

Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi

\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)

Từ (3) và (4) suy ra : EMFN là hcn