Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
Ta có hình vẽ :
a)Ta có :
\(\widehat{xAy}=\widehat{xBz}=40^o\left(\text{2 góc đồng vị}\right)\)
\(\Rightarrow Bz\text{//}Ay\)
=> Điều phải chứng minh
b)Ta có :
\(\widehat{xAm}=\widehat{xBn}=\frac{40}{2}=20^o\)
Mà 2 góc này ở vị trí đồng vị
=> Am//Bn
=> Điều phải chứng minh
a,Ta có : góc xAy = góc xBz = 40độ
mà chúng ở vị trí đồng vị nên
Bz // Ay
b,Vì Am , Bn lần lượt là tia phân giác góc xAy và góc xOz nên :
góc A1 = \(\frac{\widehat{xAy}}{2}=\frac{40^0}{2}\)= 20độ
góc B1 = \(\frac{\widehat{xBz}}{2}=\frac{40^0}{2}\) = 20độ
mà góc xAy = góc xBz
Suy ra : góc A1 = góc B1
Ta lại có : góc A1 và góc B1 ở vị trí đồng vị
Vậy Am // Bn .
Học tốt
bài 1:
a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)
suy ra :Ay // Bz
1.
a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song
b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)
Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)
2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé
Tự vẽ hình
Ta có Góc xAy Với gócABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai dường thẳng songsong ta đc:
ABy=40độ
2/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN
k giùm nha! ^-^
Ta có Góc xAy Với góc ABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai đường thẳng songsong tả đc:
ABy=40độ
b/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN