Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)
Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)
\(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3}{2-\sqrt{x}}\)
b) thay \(x=7+4\sqrt{3}\) vào A
ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)
vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)
c)với\(x\ge0\) và \(x\ne4\)
Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)
\(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow21=-6+3\sqrt{x}\)
\(\Leftrightarrow21+6=3\sqrt{x}\)
\(\Leftrightarrow27=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=9\)
\(\Leftrightarrow x=81\)
Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)
mình giúp bài 3 cho
\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\left(ĐKXĐ:x\ge5\right)\)
\(< =>\sqrt{25\left(x-5\right)}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=6\)
\(< =>\sqrt{25}.\sqrt{x-5}-3\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-3.\frac{\sqrt{x-5}}{3}-\frac{1}{3}.3.\sqrt{x-5}=6\)
\(< =>5.\sqrt{x-5}-\sqrt{x-5}-\sqrt{x-5}=6\)
\(< =>3\sqrt{x-5}=6< =>\sqrt{x-5}=2\)
\(< =>x-5=4< =>x=4+5=9\left(tmđk\right)\)
a) đkxđ : \(x\ge0;x\ne2;x\ne1\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{-2x+\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(-2\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
b) P>=2
\(\frac{-2x+\sqrt{x}+3-2\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-2x+\sqrt{x}+3-2x+6\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-4x+7\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
\(\frac{-4\left(\sqrt{x}-\frac{7+\sqrt{33}}{8}\right)\left(\sqrt{x}-\frac{7-\sqrt{33}}{8}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\ge0\)
a) Ta có :\(x-3\sqrt{x}+2=\left(\sqrt{x}\right)^2-\sqrt{x}-2\sqrt{x}+2\)\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
P xác định \(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\\\sqrt{x}-1\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\ne2\\\sqrt{x}\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne1\end{cases}}}\)
Vậy với \(x\ge0;x\ne4;x\ne1\)thì P xác định
b) Cho mình hỏi, câu b là yêu cầu tìm x để \(P\ge2\)hay chứng minh \(P\ge2\)
c) \(P=\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{x-\sqrt{x}-3\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\sqrt{x}-2x+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{\left(\sqrt{x}+1\right)\left(3-2\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
Bạn thử xem lại đề nhé. Nếu rút gọn thì kết quả như trên, không rút gọn đc nữa. Chỉ khi nào trên tử là số mới tìm P nguyên đc
Mình sẽ suy nghĩ thêm
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)