K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a.\)

\(C=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x^2+3x}{x^2-2x}-\dfrac{2x+1}{3-x}\)

\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2+3x}{x\left(x-2\right)}+\dfrac{2x+1}{x-3}\) \(\left(1\right)\)

\(\text{Đ}KX\text{Đ}:\) \(\left\{{}\begin{matrix}x\ne0\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\) \(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x^2+3x}{x\left(x-2\right)}+\dfrac{2x+1}{x-3}\)

\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{x+3}{x-2}+\dfrac{2x+1}{x-3}\)

\(C=\dfrac{2x-9}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\)

\(C=\dfrac{2x-9-x^2+9+2x^2-3x-2}{\left(x-3\right)\left(x-2\right)}\)

\(C=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)

\(C=\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-3\right)\left(x-2\right)}\)

\(C=\dfrac{x-1}{x-3}\)

\(b\)

\(C=\dfrac{x-1}{x-3}=\dfrac{\left(x-3\right)+4}{x-3}=1+\dfrac{4}{x-3}\)

Để C nguyên thì \(x-3\in\text{Ư}\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{-1;1;2;4;5;7\right\}\)

4 tháng 7 2018

\(a.C=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x^2+3x}{x^2-2x}-\dfrac{2x+1}{3-x}\) ( x # 2 ; x # 0 ; x # 3 )

\(C=\dfrac{2x^2-9x}{x\left(x-2\right)\left(x-3\right)}-\dfrac{x\left(x^2-9\right)}{x\left(x-2\right)\left(x-3\right)}+\dfrac{\left(x^2-2x\right)\left(2x+1\right)}{x\left(x-2\right)\left(x-3\right)}\) \(C=\dfrac{2x^2-9x-x^3+9x+2x^3-3x^2-2x}{x\left(x-2\right)\left(x-3\right)}\)

\(C=\dfrac{x^3-x^2-2x}{x\left(x-2\right)\left(x-3\right)}\)

\(C=\dfrac{x\left(x-2\right)\left(x+1\right)}{x\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b. \(C=\dfrac{x+1}{x-3}=\dfrac{x-3+4}{x-3}=1+\dfrac{4}{x-3}\)

Để : C ∈ Z ⇒ ( x - 3 )∈ { 1 ; -1 ; 2 ; -2 ; 4 ; -4 } x - 3 x 1 4 - 1 2 (TM) 2 5(TM) -2 1(TM) 4 7(TM) -4 -1(TM) (KTM)

Vậy ,....

5 tháng 12 2021

\(a,A=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ A=\dfrac{-6x+18}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-6\left(x-3\right)}{2\left(x-3\right)\left(x-1\right)}=\dfrac{-3}{x-1}\\ b,A\in Z\Leftrightarrow x-1\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\)

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>

8 tháng 12 2021

a)B =  \(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{7x+3}{9-x^2}\left(ĐK:x\ne\pm3\right)\)

\(\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}-\dfrac{7x+3}{x^2-9}\)

\(\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)-7x-3}{\left(x+3\right)\left(x-3\right)}\)

\(\dfrac{3x^2-9x}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x}{x+3}\)

b) \(\left|2x+1\right|=7< =>\left[{}\begin{matrix}2x+1=7< =>x=3\left(L\right)\\2x+1=-7< =>x=-4\left(C\right)\end{matrix}\right.\)

Thay x = -4 vào B, ta có:

B = \(\dfrac{-4.3}{-4+3}=12\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3x}{x+3}=\dfrac{-3}{5}< =>\dfrac{3x}{x+3}+\dfrac{3}{5}=0\)

<=> \(\dfrac{15x+3x+9}{5\left(x+3\right)}=0< =>x=\dfrac{-1}{2}\left(TM\right)\)

d) Để B nguyên <=> \(\dfrac{3x}{x+3}\) nguyên

<=> \(3-\dfrac{9}{x+3}\) nguyên <=> \(9⋮x+3\)

x+3-9-3-1139
x-12(C)-6(C)-4(C)-2(C)0(C)6(C)

 

a: Thay x=5 vào B, ta được:

\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)

b:  \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)

28 tháng 6 2023

Xem lại biểu thức P.

28 tháng 6 2023

loading...

Mình phải đi ăn nên chiều mình làm nốt câu d nhé

a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)

b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)

c: Thay x=2017 vào C, ta được:

\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

\(A=\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\left(ĐKXĐ:x\ne\pm3\right)\)

a, \(A=\dfrac{-\left(x-3\right)\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)}+\dfrac{x}{x+3}\)

\(=-1+\dfrac{x}{x+3}=\dfrac{-x-3+x}{x+3}=\dfrac{-3}{x+3}\)

b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3\Leftrightarrow x\left(x-3\right)+\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

TH1 : Nếu x = 3 thì gt của biểu thức \(A=\dfrac{-3}{3+3}=-\dfrac{3}{6}=-\dfrac{1}{2}\)

TH2 : Nếu x = -2 thì gt của biểu thức \(A=\dfrac{-3}{-2+3}=-3\)

c, Để A nhận giá trị nguyên thì \(x+3\inƯ\left(3\right)\) ( Ư(-3 ) cũng được như nhau nhé ! )

Xét bảng :

x + 3 x
1 -2
-1 -4
3 0
-3 -6

Vậy để A nguyên thì \(x\in\left\{-6;-4;-2;0\right\}\)

 

a: \(A=\dfrac{x+2+x^2-2x+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x^2-4}\)